如图9所示,在xOy平面的第二象限有一匀强电场,电场的方向沿轴方向;在y轴和第一象限的射线OC之间有一匀强磁场,磁感应强度的大小为B,方向垂直于纸面向外。有一质量为m,带有电荷量+q的质点由轴上的P点向平行于轴射人电场。质点到达y轴上A点时,速度方向与轴的夹角为,A点与原点0的距离为d。接着,质点进入磁场,并垂直于OC飞离磁场。不计重力影响。若OC与轴的夹角为,求:
(1)粒子在磁场中运动速度的大小;
(2)匀强电场P、A两点间的电势差.
如图6-7所示,矩形线圈abcd放置在水平面内,磁场方向与水平面成α角,已知sinα=,线圈面积为S,匀强磁场的磁感应强度为B,则通过线圈的磁通量为( )
图6-7
A.BS | B. | C. | D. |
矩形线圈abcd放在如图所示匀强磁场中,线圈abcd可绕轴O O,转动,磁场足够大. 下列做法中可以使线圈abcd中产生感应电流的是( )
A.使线圈abcd沿着纸面向右运动 |
B.使线圈abcd沿着纸面向上运动 |
C.使线圈abcd垂直纸面向外运动 |
D.使线圈abcd以O O,为轴转动 |
在做“描绘小灯泡的伏安特性曲线”实验时,所用器材有:电动势为6V的电源,额定电压为2.5V的小灯泡,以及符合实验要求的滑动变阻器、电表、开关和导线。要求能测出尽可能多组数据,如图是没有连接完的实物电路。(已连接好的导线有a、b、c、d、e、f六根)
(1)请你用笔画线代替导线,将实物电路连接完整;
(2)排除故障后比和开关,移动滑片P到某处,电压表的示数为2.2V,在要测量小灯泡的额定功率,应将滑片P向__________端滑动(选填“左”“右”);
(3)通过移动滑片P,分别记下了多组对应的电压表和电流表的读数,并绘制成了如图所示的U—I图线。根据U—I图线提供的信息,可计算出小灯泡的额定功率是_________W。
(4)图线是曲线而不是过原点的直线,原因是____________________。
三个速度大小不同而质量相同的一价离子,从长方形区域的匀强磁场上边缘平行于磁场边界射入磁场,它们从下边缘飞出时的速度方向见右图。以下判断正确的是( )
A.三个离子均带负电 | B.三个离子均带正电 |
C.离子1在磁场中运动的轨道半径最大 | D.离子3在磁场中运动的时间最长 |
若粒子刚好能在如图所示的竖直面内做匀速圆周运动,则可以判断
A.粒子运动中机械能守恒 | B.粒子带负电 |
C.只能是逆时针运动 | D.只能是顺时针运动 |
如图,一束质量、速度和电荷量不全相等的离子,经过由正交的匀强电场和匀强磁场组成的速度选择器后,进入另一个匀强磁场中并分裂为A、B束,下列说法中正确的是
A.组成A、B束的离子都带正电
B.组成A、B束的离子质量一定不同
C.速度选择器中的磁场方向垂直纸面向外
D.A束离子的比荷()大于B束离子的比荷
如图所示,质量m=0.015kg的木块Q放在水平桌面上的A点.A的左边光滑,右边粗糙,与木块间的动摩擦因数μ=0.08.在如图的两条虚线之间存在竖直向上的匀强电场和水平向里的匀强磁场,场强分别为E=20N/C、B=1T.场区的水平宽度d=0.2m,竖直方向足够高.带正电的小球P,质量M=0.03kg,电荷量q=0.015C,以v0=0.5m/s的初速度向Q运动.与Q发生正碰后,P在电、磁场中运动的总时间t=1.0s.不计P和Q的大小,P、Q碰撞时无电量交换,重力加速度g取10m/s2,计算时取,试求:
(1)通过受力分析判断碰后P球在电、磁场中做什么性质的运动;
(2)P从电、磁场中出来时的速度大小;
(3)P从电、磁场中出来的时刻,Q所处的位置.
如图所示,半径R=10cm的圆形匀强磁场区域边界跟y轴相切于坐标系原点O,磁感强度B=0.332T,方向垂直于纸面向里.在O处有一放射源,可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子,已知α粒子的质量m=6.64×10-27kg,电量q=3.2×10-19C.求:
(1)画出α粒子通过磁场空间做圆运动的圆心点轨迹,并说明作图的依据.
(2)求出α粒子通过磁场空间的最大偏转角.
(3)再以过O点并垂直于纸面的直线为轴旋转磁场区域,能使穿过磁场区且偏转角最大的α粒子射到正方向的y轴上,则圆形磁场区的直径OA至少应转过多大角度?
如图所示,水平放置的两块长直平行金属板a、b相距d =0.10m,a、b间的电场强度为E =3.0×103 N/C,b板下方整个空间存在着磁感应强度大小为B =0.3T、方向垂直纸面向里的匀强磁场.今有一质量为m =2.4×10-13 kg、电荷量为q =4.0×10-8 C的带正电的粒子(不计重力),从贴近a板的左端以v0 =1.0×104 m/s的初速度从A点水平射入匀强电场,刚好从狭缝P处穿过b板而垂直进入匀强磁场,最后粒子回到b板的Q处(图中未画出).
求:(1)粒子到达P处时的速度大小和方向;
(2)P、Q之间的距离L ;
(3)粒子从A点运动到Q点所用的时间t .
如图所示,真空有一个半径r=0.5m的圆形磁场,与坐标原点相切,磁场的磁感应强度大小B=2×10-3T,方向垂直于纸面向外,在x=r处的虚线右侧有一个方向竖直向上的宽度为L1=0.5m的匀强电场区域,电场强度E=1.5×103N/C。在x=2m处有一垂直x方向的足够长的荧光屏,从O点处向不同方向发射出速率相同的荷质比=1×109C/kg带正电的粒子,粒子的运动轨迹在纸面内,一个速度方向沿y轴正方向射入磁场的粒子,恰能从磁场与电场的相切处进入电场。不计重力及阻力的作用。求:
(1)该粒子进入电场时的速度和粒子在磁场中的运动时间。
(2)该粒子最后打到荧光屏上,该发光点的位置坐标。
(3)求荧光屏上出现发光点的范围
如图所示, xoy平面内的正方形区域abcd,边长为L,oa=od=,在该区域内有与y轴平行的匀强电场和垂直于平面的匀强磁场,一个带电粒子(不计重力)从原点沿+x轴进入场区,恰好沿+x轴直线射出。若撤去电场只保留磁场,其他条件不变,该粒子从cd边上距d点处射出,若撤去磁场,只保留电场,其他条件不变,该粒子从哪条边上何处射出?
如图16-107所示,两个共轴的圆筒形金属电极,外电极接地,其上均匀分布着平行于轴线的四条狭缝a、b、c和d,外筒的外半径为r0.在圆筒之外的足够大区域中有平行于轴线方向的均匀磁强,磁感应强度的大小为B.在两极间加上电压,使两圆筒之间的区域内有沿半径向外的电场.一质量为m、带电量为+q的粒子,从紧靠内筒且正对狭缝a的S点出发,初速为零.如果该粒子经过一段时间的运动之后恰好又回到出发点S,则两电极之间的电压U应是多少?(不计重力,整个装置在真空中).
(1996年全国,26)设在地面上方的真空室内,存在匀强电场和匀强磁场,已知电场强度和磁感应强度的方向是相同的,电场强度的大小为E=4.0V/m,磁感应强度的大小B=0.15T,今有一带负电的质点以v=20m/s的速度在此区域内沿垂直场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示).
如图所示,一带负电的质点在固定的正的点电荷作用下绕该正电荷做匀速圆周运动,周期为,轨道平面位于纸面内,质点的速度方向如图中箭头所示。现加一垂直于轨道平面的匀强磁场,已知轨道半径并不因此而改变,则()
A. | 若磁场方向指向纸里,质点运动的周期将大于 |
B. | 若磁场方向指向纸里,质点运动的周期将小于 |
C. | 若磁场方向指向纸外,质点运动的周期将大于 |
D. | 若磁场方向指向纸外,质点运动的周期将小于 |
试题篮
()