优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 高中物理试题 / 电火花计时器、电磁打点计时器 / 计算题
高中物理

如图所示,竖直平面内的直角坐标系中,X轴上方有一个圆形有界匀强磁场(图中未画出),x轴下方分布有斜向左上与Y轴方向夹角θ=45°的匀强电场;在x轴上放置有一挡板,长0.16m,板的中心与O点重合。今有一带正电粒子从y轴上某点P以初速度v0=40m/s与y轴负向成45°角射入第一象限,经过圆形有界磁场时恰好偏转90°,并从A点进入下方电场,如图所示。已知A点坐标(0.4m,0),匀强磁场垂直纸面向外,磁感应强度大小B=T,粒子的荷质比C/kg,不计粒子的重力。问:

(1)带电粒子在圆形磁场中运动时,轨迹半径多大?
(2)圆形磁场区域的最小面积为多少?
(3)为使粒子出电场时不打在挡板上,电场强度应满足什么要求?

  • 题型:未知
  • 难度:未知

(16分)如图所示,直角坐标系xoy的第一象限内有场强为E方向沿x轴负向的匀强电场,第二象限内有方向沿y轴负向的匀强电场,在的区域内有方向垂直坐标平面的匀强磁场.一质量为m、电荷量为q的正粒子(不计重力),从P()点由静止开始运动, 通过第二象限后经点再进入y≤0区域,并恰好经过坐标原点O.求

(1)第二象限内匀强电场的场强
(2)y≤0区域内匀强磁场的磁感应强度B.
(3)粒子从P到0经历的时间.

  • 题型:未知
  • 难度:未知

如图所示,真空中有以O1为圆心,r为半径的圆形匀强磁场区域,坐标原点O为圆形磁场边界上的一点。磁场的磁感应强度大小为B,方向垂直于纸面向外。x=r的虚线右侧足够大的范围内有方向竖直向下、大小为E的匀强电场。从O点在纸面内向各个不同方向发射速率相同的质子,设质子在磁场中的偏转半径也为r,已知质子的电荷量为e,质量为m。求:

(1)质子射入磁场时的速度大小;
(2)速度方向沿y轴正方向射入磁场的质子到达x轴所需的时间;
(3)速度方向与y轴正方向成37°角且与x轴正方向成127°角射入磁场的质子到达x轴时的位置坐标。(已知sin37°=0.6,cos37°="0.8)"

  • 题型:未知
  • 难度:未知

如图所示,光滑绝缘的水平面上有一网状结构的板OA与水平成为30°倾角放置,其左端有一竖直档板,挡板上有一小孔P,已知OA板上方有方向竖直向上、场强大小为E=5V/m的匀强电场,和垂直纸面向外的、磁感应强度大小为B=1T的匀强磁场,现有一质量为m=带电量为q=+的带电小球,从小孔P以速度v=2m/s水平射入上述电场、磁场区域,之后从OA板上的M点垂直OA方向飞出上述的电磁场区域后而进入下方的电磁场区域 ,OA板下方电场方向变为水平向右,电场强度大小为,当小球碰到水平地面时立刻加上匀强磁场,磁感应强度大小仍为B=1T,方向垂直纸面向里。小球与水平地面相碰时,竖直方向速度立刻减为零,水平方向速度不变,小球运动到D处刚好离开水平地面,然后沿着曲线DQ运动,重力加速度为g=10m/s2,小球在水平地面上运动过程中电量保持不变,不计摩擦。

(1)求小球在OA上方空间电磁场中运动时间
(2)求小球从M运动到D的时间;
(3)若小球在DQ曲线上运动到某处时速率最大为vm,该处轨迹的曲率半径(即把那一段曲线尽可能的微分,近似一个圆弧,这个圆弧对应的半径即曲线上这个点的曲率半径)。求vm的函数关系。

  • 题型:未知
  • 难度:未知

如图甲所示,MN、PQ是固定于同一水平面内相互平行的粗糙长直导轨,间距L=2.0m;R是连在导轨一端的电阻,质量m=1.0kg的导体棒ab垂直跨在导轨上,电压传感器与这部分装置相连。导轨所在空问有磁感应强度B=0.5T、方向竖直向下的匀强磁场。从t=0开始对导体棒ab施加一个水平向左的外力F,使其由静止开始沿导轨向左运动,电压传感器测出R两端的电压随时间变化的图线如图乙所示,其中OA段是直线,AB段是曲线、BC段平行于时间轴。假设在从1.2s开始以后,外力F的功率P=4.5W保持不变。导轨和导体棒ab的电阻均可忽略不计,导体棒ab在运动过程中始终与导轨垂直,且接触良好。不计电压传感器对电路的影响(g=10m/s2)。求

(1)导体棒ab做匀变速运动的加速度及运动过程中最大速度的大小;   
(2)在1.2s~2.4s的时间内,该装置产生的总热量Q;
(3)导体棒ab与导轨间的动摩擦因数μ和电阻R的值。

  • 题型:未知
  • 难度:未知

如图所示,在第一、二象限存在场强均为E的匀强电场,其中第一象限的匀强电场的方向沿x轴正方向,第二象限的电场方向沿x轴负方向。在第三、四象限矩形区域ABCD内存在垂直于纸面向外的匀强磁场,矩形区域的AB边与x轴重合。M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e的质子,以初速度v0沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,不计质子的重力,试求:

(1)N点横坐标d;
(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;
(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间。

  • 题型:未知
  • 难度:未知

如图所示,在y>0的空间中存在匀强电场,场强沿y轴负方向;在y<0的空间中,存在匀强磁场,磁场方向垂直xOy平面向外.一电荷量为q、质量为m的带正电的运动粒子,经过y轴上y=b处的点P1时速率为v0,方向沿x轴正方向;然后,经过x轴上x=2b处的P2点进入磁场,并经过y轴上y=-2b处的P3点,不计粒子重力.求:

(1)电场强度的大小;     
(2)粒子到达P2时速度的大小和方向;
(3)磁感应强度的大小.

  • 题型:未知
  • 难度:未知

如图所示,s为一电子发射枪,可以连续发射电子束,发射出来的电子初速度可视为0,电子经过平行板A、B之间的加速电场加速后,从o点沿x轴正方向进入xoy平面内,在第一象限内沿x、y轴各放一块平面荧光屏,两屏的交点为o,已知在y>0、0<x<a的范围内有垂直纸面向外的匀强磁场,在y>0、x>a的区域有垂直纸面向里的匀强磁场,大小均为B。已知给平行板AB提供直流电压的电源E可以给平行板AB提供0~U之间的各类数值的电压,现调节电源E的输出电压,从0调到最大值的过程中发现当AB间的电压为U时,x轴上开始出现荧光。(不计电子的重力)试求:

(1)当电源输出电压调至U和U时,进入磁场的电子运动半径之比r1:r2
(2)两荧光屏上的发光亮线的范围。

  • 题型:未知
  • 难度:未知

(12分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,电压的大小为U0,周期为T0。在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=时刻通过S2垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)

(1)求粒子到达S2时的速度大小v
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;
(3)若已保证了粒子未与极板相撞,为使粒子在t=T0时刻再次到达S1,而再次进入电场被加速,求该过程中粒子在磁场内运动的时间和磁感应强度的大小。

  • 题型:未知
  • 难度:未知

如图所示,水平线QC下方是水平向左的匀强电场;区域Ⅰ(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度为B;区域Ⅱ(三角形APD)内也有垂直纸面向里的匀强磁场,但是磁感应强度大小可以与区域Ⅰ不同;区域Ⅲ(虚线PD之上、三角形APD以外)有垂直纸面向外的匀强磁场,磁感应强度与区域Ⅱ内磁感应大小相等。三角形AQC是边长为2L的等边三角形,P、D分别为AQ、AC的中点.带正电的粒子从Q点正下方、距离Q点为L的O点以某一速度射出,在电场力作用下从QC边中点N以速度v0垂直QC射入区域Ⅰ,接着从P点垂直AQ射入区域Ⅲ。若区域Ⅱ、Ⅲ的磁感应强度大小与区域Ⅰ的磁感应强度满足一定的关系,此后带电粒子又经历一系列运动后又会以原速率返回O点.(粒子重力忽略不计)求:

(1)该粒子的比荷;
(2)粒子从O点出发再回到O点的整个运动过程所有可能经历的时间.

  • 题型:未知
  • 难度:未知

如右图所示,PQ是两块平行金属板,上极板接电源正极,两极板之间的电压为U=1.2×104V,一带负电的粒子通过P极板的小孔以速度v0=2.0×104m/s垂直金属板飞入,通过Q极板上的小孔后,垂直AC边经中点O进入边界为等腰直角三角形的匀强磁场中,磁感应强度为B=1.0T,边界AC的长度为L=1.6m,粒子比荷=5×104C/kg,不计粒子的重力。求:

(1)粒子进入磁场时的速度大小;
(2)粒子经过磁场边界上的位置到B点的距离以及在磁场中的运动时间。

  • 题型:未知
  • 难度:未知

在平面直角坐标系xOy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B。一质量为m.电荷量为q的带正电的粒子从y轴正半轴上的M点以速度v0垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,如图所示。不计粒子重力,求:

(1)粒子过N点时速度
(2)粒子在磁场中运动的轨道半径r;
(3)粒子从M点运动到P点的总时间t。

  • 题型:未知
  • 难度:未知

(18分) 如图所示,区域Ⅰ中有竖直向上的匀强电场,电场强度为E; 区域Ⅱ内有垂直纸面向外的水平匀强磁场,磁感应强度为B;区域Ⅲ中有垂直纸面向里的水平匀强磁场,磁感应强度为2B。一质量为m、带电量为q的带负电粒子(不计重力)从左边界O点正上方的M点以速度v0水平射入电场,经水平分界线OP上的A点与OP成60°角射入Ⅱ区域的磁场,并垂直竖直边界CD进入Ⅲ区域的匀强磁场中。

求:(1)粒子在Ⅱ区域匀强磁场中运动的轨道半径;
(2)O、M间的距离;
(3)粒子从第一次进入区域Ⅲ到离开区域Ⅲ所经历的时间t3

  • 题型:未知
  • 难度:未知

如图所示,真空中有以(r,0)为圆心,半径为r的圆柱形匀强磁场区域,磁场的磁感应强度大小为B,方向垂直于纸面向里,在y=r的实线上方足够大的范围内,有方向水平向左的匀强电场,电场强度的大小为E,从O点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内,设质子在磁场中的偏转半径也为r,已知质子的电量为e,质量为m,不计重力及阻力的作用,求:

(1)质子射入磁场时的速度大小。
(2)速度方向沿x轴正方向射入磁场的质子,到达y轴所需的时间。
(3)速度方向与x轴正方向成30°角(如图所示)射入磁场的质子,到达y轴的位置坐标。

  • 题型:未知
  • 难度:未知

如右图甲所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab以一定的初速度向右匀速运动,棒的右侧存在一个垂直纸面向里,大小为B的匀强磁场。棒进入磁场的同时,粒子源P释放一个初速度为0的带电粒子,已知带电粒子质量为m,电量为q.粒子能从N板加速到M板,并从M板上的一个小孔穿出。在板的上方,有一个环形区域内存在大小也为B,垂直纸面向外的匀强磁场。已知外圆半径为2d, 里圆半径为d.两圆的圆心与小孔重合(粒子重力不计)

(1)判断带电粒子的正负,并求当ab棒的速度为v0时,粒子到达M板的速度v;
(2)若要求粒子不能从外圆边界飞出,则v0的取值范围是多少?
(3)若棒ab的速度v0只能是,则为使粒子不从外圆飞出,则可以控制导轨区域磁场的宽度S(如图乙所示),那该磁场宽度S应控制在多少范围内

  • 题型:未知
  • 难度:未知

高中物理电火花计时器、电磁打点计时器计算题