如图所示,真空中有以(r,0)为圆心,半径为r的圆柱形匀强磁场区域,磁场的磁感应强度大小为B,方向垂直于纸面向里,在y=r的实线上方足够大的范围内,有方向水平向左的匀强电场,电场强度的大小为E,从O点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内,设质子在磁场中的偏转半径也为r,已知质子的电量为e,质量为m,不计重力及阻力的作用,求:
(1)质子射入磁场时的速度大小。
(2)速度方向沿x轴正方向射入磁场的质子,到达y轴所需的时间。
(3)速度方向与x轴正方向成30°角(如图所示)射入磁场的质子,到达y轴的位置坐标。
如右图甲所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab以一定的初速度向右匀速运动,棒的右侧存在一个垂直纸面向里,大小为B的匀强磁场。棒进入磁场的同时,粒子源P释放一个初速度为0的带电粒子,已知带电粒子质量为m,电量为q.粒子能从N板加速到M板,并从M板上的一个小孔穿出。在板的上方,有一个环形区域内存在大小也为B,垂直纸面向外的匀强磁场。已知外圆半径为2d, 里圆半径为d.两圆的圆心与小孔重合(粒子重力不计)
(1)判断带电粒子的正负,并求当ab棒的速度为v0时,粒子到达M板的速度v;
(2)若要求粒子不能从外圆边界飞出,则v0的取值范围是多少?
(3)若棒ab的速度v0只能是,则为使粒子不从外圆飞出,则可以控制导轨区域磁场的宽度S(如图乙所示),那该磁场宽度S应控制在多少范围内
(12分)如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,电压的大小为U0,周期为T0。在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=时刻通过S2垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达S2时的速度大小v
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;
(3)若已保证了粒子未与极板相撞,为使粒子在t=T0时刻再次到达S1,而再次进入电场被加速,求该过程中粒子在磁场内运动的时间和磁感应强度的大小。
如图,从阴极K发射的热电子,重力和初速均不计,通过加速电场后,沿图示虚线垂直射入匀强磁场区,磁场区域足够长,宽度为L=2.5cm。已知加速电压为U=182V,磁感应强度B=9.1×10-4T,电子的电量,电子质量。求:
(1)电子在磁场中的运动半径R
(2)电子在磁场中运动的时间t(结果保留)
(3)若加速电压大小可以改变,其他条件不变,为使电子在磁场中的运动时间最长,加速电压U应满足什么条件?
如图所示,光滑绝缘的水平面上有一网状结构的板OA与水平成为30°倾角放置,其左端有一竖直档板,挡板上有一小孔P,已知OA板上方有方向竖直向上、场强大小为E=5V/m的匀强电场,和垂直纸面向外的、磁感应强度大小为B=1T的匀强磁场,现有一质量为m=带电量为q=+的带电小球,从小孔P以速度v=2m/s水平射入上述电场、磁场区域,之后从OA板上的M点垂直OA方向飞出上述的电磁场区域后而进入下方的电磁场区域 ,OA板下方电场方向变为水平向右,电场强度大小为,当小球碰到水平地面时立刻加上匀强磁场,磁感应强度大小仍为B=1T,方向垂直纸面向里。小球与水平地面相碰时,竖直方向速度立刻减为零,水平方向速度不变,小球运动到D处刚好离开水平地面,然后沿着曲线DQ运动,重力加速度为g=10m/s2,小球在水平地面上运动过程中电量保持不变,不计摩擦。
(1)求小球在OA上方空间电磁场中运动时间;
(2)求小球从M运动到D的时间;
(3)若小球在DQ曲线上运动到某处时速率最大为vm,该处轨迹的曲率半径(即把那一段曲线尽可能的微分,近似一个圆弧,这个圆弧对应的半径即曲线上这个点的曲率半径)。求vm与的函数关系。
如图甲所示,MN、PQ是固定于同一水平面内相互平行的粗糙长直导轨,间距L=2.0m;R是连在导轨一端的电阻,质量m=1.0kg的导体棒ab垂直跨在导轨上,电压传感器与这部分装置相连。导轨所在空问有磁感应强度B=0.5T、方向竖直向下的匀强磁场。从t=0开始对导体棒ab施加一个水平向左的外力F,使其由静止开始沿导轨向左运动,电压传感器测出R两端的电压随时间变化的图线如图乙所示,其中OA段是直线,AB段是曲线、BC段平行于时间轴。假设在从1.2s开始以后,外力F的功率P=4.5W保持不变。导轨和导体棒ab的电阻均可忽略不计,导体棒ab在运动过程中始终与导轨垂直,且接触良好。不计电压传感器对电路的影响(g=10m/s2)。求
(1)导体棒ab做匀变速运动的加速度及运动过程中最大速度的大小;
(2)在1.2s~2.4s的时间内,该装置产生的总热量Q;
(3)导体棒ab与导轨间的动摩擦因数μ和电阻R的值。
如图所示,竖直平面内的直角坐标系中,X轴上方有一个圆形有界匀强磁场(图中未画出),x轴下方分布有斜向左上与Y轴方向夹角θ=45°的匀强电场;在x轴上放置有一挡板,长0.16m,板的中心与O点重合。今有一带正电粒子从y轴上某点P以初速度v0=40m/s与y轴负向成45°角射入第一象限,经过圆形有界磁场时恰好偏转90°,并从A点进入下方电场,如图所示。已知A点坐标(0.4m,0),匀强磁场垂直纸面向外,磁感应强度大小B=T,粒子的荷质比C/kg,不计粒子的重力。问:
(1)带电粒子在圆形磁场中运动时,轨迹半径多大?
(2)圆形磁场区域的最小面积为多少?
(3)为使粒子出电场时不打在挡板上,电场强度应满足什么要求?
如图所示,在第一、二象限存在场强均为E的匀强电场,其中第一象限的匀强电场的方向沿x轴正方向,第二象限的电场方向沿x轴负方向。在第三、四象限矩形区域ABCD内存在垂直于纸面向外的匀强磁场,矩形区域的AB边与x轴重合。M点是第一象限中无限靠近y轴的一点,在M点有一质量为m、电荷量为e的质子,以初速度v0沿y轴负方向开始运动,恰好从N点进入磁场,若OM=2ON,不计质子的重力,试求:
(1)N点横坐标d;
(2)若质子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;
(3)在(2)的前提下,该质子由M点出发返回到无限靠近M点所需的时间。
如图所示,坐标平面的第I象限内存在大小为E、方向水平向左的匀强电场,足够长的挡板MN垂直x轴放置且距离点O为d.第Ⅱ象 限内存在垂直于纸面向里的匀强磁场.磁感应强 度为B。一质量为m,带电量为-q的粒子(重力忽略不计)若自距原点O为L的A点以一定的 速度垂直x轴进入磁场,则粒子恰好到达O点而不进入电场。现该粒子仍从A点进入磁场但初速 度大小为原来的4倍为使粒子进人电场后能垂直到达挡板MN上,求
(1)粒子第一次从A点进入磁场时,速度的大小:
(2)粒子第二次从A点进入磁场时,速度方向与x轴正向间的夹角大小
(3)粒子打到挡板上时的速度大小。
如图所示,一带电粒子以与水平方向成60°角速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场。 电场强度大小为E,方向竖直向上。当粒子穿出电场时速度大小变为原来的倍。 已知带电粒子的质量为m,电量为q,重力不计。求:
(1)粒子带什么电?简述理由;
(2)带电粒子在磁场中运动时速度多大;
(3)该圆形磁场区域的最小面积为多大。
如图所示,水平地面上有一辆固定有竖直光滑绝缘管的小车,管的底部有一质量m=0.2g、电荷量q=8×10-5C的小球,小球的直径比管的内径略小.在管口所在水平面MN的下方存在着垂直纸面向里、磁感应强度B1= 15T的匀强磁场,MN面的上方还存在着竖直向上、场强E=25V/m的匀强电场和垂直纸面向外、磁感应强度B2=5T的匀强磁场.现让小车始终保持v=2m/s的速度匀速向右运动,以带电小球刚经过场的边界PQ为计时的起点,测得小球对管侧壁的弹力FN随高度h变化的关系如图所示.g取10m/s2,不计空气阻力.求:
(1)小球刚进入磁场B1时的加速度大小a;
(2)绝缘管的长度L;
(3)小球离开管后再次经过水平面MN时距管口的距离
如图所示,在直角坐标系xOy平面的第Ⅱ象限内有半径为R的圆O1分别与x轴、y轴相切于C(-R,0)、D(0,R) 两点,圆O1内存在垂直于xOy平面向外的匀强磁场,磁感应强度为B.与y轴负方向平行的匀强电场左边界与y轴重合,右边界交x轴于G点,一带正电的粒子A(重力不计)电荷量为q、质量为m,以某一速率垂直于x轴从C点射入磁场,经磁场偏转恰好从D点进入电场,最后从G点以与x轴正向夹角为45°的方向射出电场.求:
(1)OG之间的距离;
(2)该匀强电场的电场强度E;
(3)若另有一个与A的质量和电荷量相同、速率也相同的粒子A′,从C点沿与x轴负方向成30°角的方向射入磁场,则粒子A′再次回到x轴上某点时,该点的坐标值为多少?
如图甲所示,两平行金属板接有如图乙所示随时间t变化的电压U,两板间电场可看作均匀的,且两板外无电场,板长L="0.2" m,板间距离d="0.2" m。在金属板右侧有一边界为MN的区域足够大的匀强磁场,MN与两板中线OO′垂直,磁感应强度B=5×10-3T,方向垂直纸面向里.现有带正电的粒子流沿两板中线OO′连续射入电场中,已知每个粒子速度v0=105 m/s,比荷q/m=108 C/kg,重力忽略不计,在每个粒子通过电场区域的极短时间内,电场可视作是恒定不变的.
(1)试求带电粒子射出电场时的最大速度;
(2)证明:在任意时刻从电场射出的带电粒子,进入磁场时在MN上的入射点和在MN上出射点的距离为定值,写出该距离的表达式;
(3)从电场射出的带电粒子,进入磁场运动一段时间后又射出磁场,求粒子在磁场中运动的最长时间和最短时间.
(18分)如图所示,两水平线和分别是水平向里的匀强磁场的边界,宽度为d,正方形线框abcd由均匀材料制成,其边长为L(L<d)、质量为m、总电阻为R.将线框在磁场上方高h处由静止开始释放,已知线框从开始下落到完全进入磁场过程中通过线框的总电量为q,且ab边刚进入磁场时和刚穿出磁场时的速度相同,求:
(l)磁场的磁感应强度大小及ab边刚进入磁场时ab两端的电压;
(2)ab边刚进入磁场时线框加速度的大小和方向;
(3)整个线框进入磁场过程所需的时间.
如图,光滑斜面的倾角= 30°,在斜面上放置一矩形线框abcd,ab边的边长l1 =" l" m,bc边的边长l2=" 0.6" m,线框的质量m =" 1" kg,电阻R = 0.1Ω,线框通过细线与重物相连,重物质量M =" 2" kg,斜面上ef线(ef∥gh)的右方有垂直斜面向上的匀强磁场,磁感应强度B =" 0.5" T,如果线框从静止开始运动,进入磁场最初一段时间是匀速的,ef线和gh的距离s =" 11.4" m,(取g = 10m/s2),求:
(1)线框进入磁场前重物M的加速度;
(2)线框进入磁场时匀速运动的速度v;
(3)ab边由静止开始运动到gh线处所用的时间t;
(4)ab边运动到gh线处的速度大小和在线框由静止开始到运动到gh线的整个过程中产生的焦耳热。
试题篮
()