如图所示为带电平行板电容器.电容为c.板长为L,两板间距离d,在PQ板的下方有垂直纸面向里的匀强磁场.一个电荷量为、质量为m的带电粒子以速度从上板边缘沿平行于板的方向射入两板间.结果粒子恰好从下板右边缘飞进磁场,然后又恰好从下板的左边缘飞进电场.不计粒子重力.试求:
(1)板间匀强电场向什么方向?带电粒子带何种电荷?
(2)求出电容器的带电量Q
(3)匀强磁场的磁感应强度B的大小;
(4)粒子再次从电场中飞出时的速度大小和方向.
如图所示,一带电粒子以某一速度在竖直平面内做直线运动,经过一段时间后进入一垂直于纸面向里、磁感应强度为B的最小的圆形匀强磁场区域(图中未画出磁场区域),粒子飞出磁场后垂直电场方向进入宽为L的匀强电场。电场强度大小为E,方向竖直向上。当粒子穿出电场时速度大小变为原来的倍。已知带电粒子的质量为m,电量为g,重力不计。粒子进入磁场前的速度如图与水平方向成θ=60°角。求:
(1)粒子带什么性质的电荷;
(2)粒子在磁场中运动时速度多大;
(3)该最小的圆形磁场区域的面积为多大?
如图所示,真空中的矩形abcd区域内存在竖直向下的匀强电场,半径为R的圆形区域内同时存在垂直于纸面向里的匀强磁场,磁感应强度为B,圆形边界分别相切于ad、bc边的中点e、f。一带电粒子以初速度v0沿着ef方向射入该区域后能做直线运动;当撤去磁场并保留电场,粒子以相同的初速度沿着ef方向射入恰能从c点飞离该区域。已知,忽略粒子的重力。求:
(1)带电粒子的电荷量q与质量m的比值;
(2)若撤去电场保留磁场,粒子离开矩形区域时的位置。
如图所示,在坐标系xoy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xoy面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E。一质量为m、带电荷量为+q的粒子自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场。已知OP=d,OQ=2d,不计粒子重力。
(1)求粒子过Q点时速度的大小和方向。
(2)若磁感应强度的大小为一定值B0,粒子将以垂直y轴的方向进入第二象限,求B0;
(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。
如图所示,在第二象限内有水平向右的匀强电场,电场强度为E,在第一、第四象限内分别存在如图所示的匀强磁场,磁感应强度大小相等。有一个带电粒子以初速度v0垂直x轴,从x轴上的P点进入匀强电场,恰好与y轴成45°角射出电场,再经过一段时间又恰好垂直于x轴进入下面的磁场。已知OP之间的距离为d,则带电粒子( )
A.在电场中运动的时间为 |
B.在磁场中做圆周运动的半径为 |
C.自进入磁场至第二次经过x轴所用时间为 |
D.自进入电场至在磁场中第二次经过x轴的时间为 |
如图甲所示,两平行金属板A、B的板长L=0.2m,板间距d=0.2m,两金属板间加如图乙所示的交变电压,并在两板间形成交变的匀强电场,忽略其边缘效应,在金属板上侧有一方向垂直于纸面向里的匀强磁场,其上下宽度D= 0.4m,左右范围足够大,边界MN和PQ均与金属板垂直,匀强磁场的磁感应强度B =1×l0-2T.在极板下侧中点O处有一粒子源,从t=0时起不断地沿着OO’发射比荷=1×l08 C/kg.初速度为v0=2×l05m/s的带正电粒子,忽略粒子重力、粒子间相互作用以及粒子在极板间飞行时极板间的电压变化.
(1)求粒子进入磁场时的最大速率;
(2)对于能从MN边界飞出磁场的粒子,其在磁场的入射点和出射点的间距s是否为定值?若是,求该值;若不是,求s与粒子由O出发的时刻t之间的关系式;
(3)定义在磁场中飞行时间最长的粒子为{A类粒子},求出{A类粒子}在磁场中飞行的时间,以及由O出发的可能时刻.
如图所示,竖直放置的平行带电导体板A、B和水平放置的平行带电导体板C、D,B板上有一小孔,从小孔射出的带电粒子刚好可从C、D板间左上角切入C、D板间电场,已知C、D板间距离为d,长为2d, UAB=UCD=U>0,在C、D板右侧存在有一个垂直向里的匀强磁场。质量为m,电量为q的带正电粒子由静止从A板释放,沿直线运动至B板小孔后贴近C板进入C、D板间,最后能进入磁场中。带电粒子的重力不计。求:
(1)带电粒子从B板小孔射出时的速度大小v0;
(2)带电粒子从C、D板射出时的速度v大小和方向;
(3)欲使带电粒子不再返回至C、D板间,右侧磁场的磁感应强度大小应该满足什么条件?
如图(甲)所示,在xoy平面内有足够大的匀强电场,电场方向竖直向上,电场强度E=40N/C。在y轴左侧平面内有足够大的瞬时磁场,磁感应强度B1随时间t变化规律如图(乙)所示,15πs后磁场消失,选定磁场垂直向里为正方向。在y轴右侧平面内还有方向垂直纸面向外的恒定的匀强磁场,分布在一个半径为r=0.3m的圆形区域(图中未画出),且圆的左侧与y轴相切,磁感应强度B2=0.8T。t=0时刻,一质量m=8×10-4kg、电荷量q=+2×10-4C的微粒从x轴上xP=-0.8m处的P点以速度v=0.12m/s向x轴正方向入射,重力加速度g取10m/s2。
(1)求微粒在第二像限运动过程中离y轴、x轴的最大距离;
(2)若微粒穿过y轴右侧圆形磁场时,速度方向的偏转角度最大,求此圆形磁场的圆心坐标(x、y);
(3)若微粒以最大偏转角穿过磁场后, 击中x轴上的M点,求微粒从射入圆形磁场到击中M点的运动时间t 。
如图所示,在xoy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场,现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O射入磁场,其入射方向与y的方向成45°角。当粒子运动到电场中坐标为(3L,L)的P点处时速度大小为v0,方向与x轴正方向相同。求:
(1)粒子从O点射入磁场时的速度v;
(2)匀强电场的场强E0和匀强磁场的磁感应强度B0;
(3)粒子从O点运动到P点所用的时间.
如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。测得金属线框中的电流随时间变化图像如乙图所示,在金属线框被拉出过程中。
⑴求通过线框导线截面的电量及线框的电阻;
⑵写出水平力F随时间变化的表达式;
⑶已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少?
如图所示,两平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动。ab、cd 两棒的质量之比为2∶1。用一沿导轨方向的恒力F水平向右拉cd 棒,经过足够长时间以后
A.ab 棒、cd 棒都做匀速运动 |
B.ab 棒上的电流方向是由a 向b |
C.cd 棒所受安培力的大小等于2F/3 |
D.两棒间距离保持不变 |
(10分)如图所示,两根平行且光滑的金属轨道固定在斜面上,斜面与水平面之间的夹角,轨道上端接一只阻值为R=0.4的电阻器,在导轨间存在垂直于导轨平面的匀强磁场,磁场的磁感应强度B=0.5 T,两轨道之间的距离为L=40cm,且轨道足够长,电阻不计。现将一质量为m="3" g,有效电阻为r=1.0的金属杆ab放在轨道上,且与两轨道垂直,然后由静止释放,求:
(1)金属杆ab下滑过程中可达到的最大速率;
(2)金属杆ab达到最大速率以后,电阻器R每秒内产生的电热。
如图所示,在平面内的第一象限内存在沿轴正方向的匀强电场,在第四象限存在有界的磁场,磁感应强度,有一质量为,电量为的电子以的速度从轴的点(0,cm)沿轴正方向射入第一象限,偏转后从轴的点射入第四象限,方向与轴成角,在磁场中偏转后又回到点,方向与轴也成角;不计电子重力.求:
(1)OQ之间的距离及电子通过Q点的速度大小.
(2)若在第四象限内的磁场的边界为直线边界,即在虚线的下方有磁场,如图中所示,求的坐标.
(3)若在第四象限内的磁场为圆形边界的磁场,圆形边界的磁场的圆心坐标的范围.
如图所示,在xOy坐标系中,y>0的范围内存在着沿y轴正方向的匀强电场;在y<0的范围内存在着垂直纸面的匀强磁场(方向未画出)。已知OA=OC=CD=DE=EF=L,OB=L。现在一群质量为m、电荷量大小为q(重力不计)的带电粒子,分布在A、B之间。t=0时刻,这群带电粒子以相同的初速度v0沿x轴正方向开始运动。观察到从A点出发的带电粒子恰好从D点第一次进入磁场,然后从O点第一次离开磁场。
(1)试判断带电粒子所带电荷的正负及所加匀强磁场的方向;
(2)试推导带电粒子第一次进入磁场的位置坐标x与出发点的位置坐标y的关系式;
(3)试求从A点出发的带电粒子,从O点第一次离开磁场时的速度方向与x轴正方向的夹角θ。(图中未画出)
试题篮
()