如图所示,内壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定不动,让两个质量相同的小球A和小球B,紧贴圆锥筒内壁分别在水平面内做匀速圆周运动,则( )
A.A球的线速度一定大于B球的线速度 |
B.A球的角速度一定大于B球的角速度 |
C.A球的向心加速度一定大于B球的向心加速度 |
D.A球对筒壁的压力一定大于B球对筒壁的压力 |
如图所示,竖直面内固定有一个半径为R的光滑圆环,质量为m的珠子穿在环上,正在沿环做圆周运动。已知珠子通过圆环最高点时,对环的压力大小为mg/3,则此时珠子的速度大小可能是
A.![]() |
B.![]() |
C.![]() |
D.![]() |
太极球是广大市民中较流行的一种健身器材.将太极球简化成如图所示的平板和小球,熟练的健身者让球在竖直面内始终不脱离板而做匀速圆周运动,且在运动到图中的、
、
、
位置时球与板间无相对运动趋势.
为圆周的最高点,
为最低点,
、
与圆心
等高.球的质量为
,重力加速度为
,则
A.在C处板对球所需施加的力比![]() ![]() |
B.球在运动过程中机械能守恒 |
C.球在最低点![]() ![]() |
D.板在![]() ![]() |
铁路转弯处的弯道半径r是由地形决定的,弯道处要求外轨比内轨高,其内、外轨高度差h的设计不仅与r有关,还与火车在弯道上的行驶速率v有关。下列说法正确的是( )
A.速率v一定时,r越大,要求h越大 |
B.速率v一定时,r越小,要求h越大 |
C.半径r一定时,v越小,要求h越大 |
D.半径r一定时,v越大,要求h越大 |
如图所示,一倾斜的匀质圆盘垂直于盘面的固定对称轴以恒定的角速度转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为
。设最大静摩擦力等于滑动摩擦力),盘面与水平面间的夹角为30°,g取10
。则
的最大值是
A.![]() |
B.![]() |
C.![]() |
D.![]() |
某人造地球卫星绕地球做匀速圆周运动,假如它的轨道半径增加到原来的n倍后,仍能够绕地球做匀速圆周运动,则:
A.根据![]() |
B.根据![]() ![]() |
C.根据![]() ![]() |
D.根据![]() ![]() |
一人造卫星绕地球运动,由于受到稀薄气体阻力的作用,其轨道半径会缓慢发生变化。若卫星绕地球运动一周的过程都可近似看做圆周运动,则经过足够长的时间后,卫星绕地球运行的
A.半径变大,角速度变大,速率变大 |
B.半径变小,角速度变大,速率变大 |
C.半径变大,角速度变小,速率变小 |
D.半径变小,角速度变小,速率变小 |
【改编】实验是模拟拱形桥来研究汽车通过桥的最高点时对桥的压力。在较大的平整木板上相隔一定的距离钉4个钉子,将三合板弯曲成拱桥形卡入钉内,三合板上表面事先铺上一层牛仔布以增加摩擦,这样玩具惯性车就可以在桥面上跑起来了。把这套系统放在电子秤上,关于电子秤的示数下列说法正确的是( )
A.玩具车经过拱桥顶端时受支持力等于自身重力,处于平衡状态 |
B.玩具车运动通过拱桥顶端时对拱形桥的压力大于玩具车受到的支持力 |
C.玩具运动通过拱桥顶端时处于超重状态 |
D.玩具运动通过拱桥顶端时速度越大(未离开拱桥),示数越小 |
如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速慢慢增加时( ).
A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1 |
B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2 |
C.随转速慢慢增加,m1先开始滑动 |
D.随转速慢慢增加,m2先开始滑动 |
一杂技演员骑摩托车沿一竖直圆形轨道做特技表演,如图所示.A、C两点分别是轨道的最低点和最高点,B、D分别为两侧的端点, 若运动中速率保持不变,人与车的总质量为m,设演员在轨道内逆时针运动.下列说法正确的是( )
A.人和车的向心加速度大小不变
B.摩托车通过最低点A时,轨道受到的压力可能等于mg
C.由D点到A点的过程中,人始终处于超重状态
D.摩托车通过A、C两点时,轨道受到的压力完全相同
如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相等的小球A和B沿着筒的内壁在水平面内作匀速圆周运动,A的运动半径较大,则下列说法正确的是
A.球A的线速度小于球B的线速度 |
B.球A的角速度大于球B的角速度 |
C.球A的加速度等于球B的加速度 |
D.球A对筒壁的压力大小大于球B对筒壁的压力大小 |
如图所示,细绳的一端固定在O点,另一端系一质量为m的小球(可视为质点),当小球在竖直平面内沿逆时针方向做圆周运动时,通过传感器测得轻绳拉力FT与轻绳与竖直方向OP的夹角θ满足关系式FT=a+bcos θ,式中a、b为常数。若不计空气阻力,则当地的重力加速度为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
赤道上随地球自转的物体A,赤道上空的近地卫星B,地球的同步卫星C,它们的运动都可以视为匀速圆周运动.分别用a、v、T、ω表示物体的向心加速度、速度、周期和角速度,下列判断正确的是( )
A.aA>aB>aC | B.vB>vC>vA | C.TA>TB>TC | D.ωA>ωC>ωB |
人类向宇宙空间发展最具可能的是在太阳系内地球附近建立“太空城”。设想中的一个圆柱形太空城,其外壳为金属材料,长,直径
,内壁沿纵向分隔成6个部分,窗口和人造陆地交错分布,陆地上覆盖
厚的土壤,窗口外有巨大的铝制反射镜,可调节阳光的射入,城内部充满空气、太空城内的空气、水和土壤最初可从地球和月球运送,以后则在太空城内形成与地球相同的生态环境。为了使太空城内的居民能如地球上一样具有“重力”,以适应人类在地球上的行为习惯,太空城将在电力的驱动下,绕自己的中心轴以一定的角速度转动。如图为太空城垂直中心轴的截面,以下说法正确的有
A.太空城内物体所受的“重力”一定通过垂直中心轴截面的圆心 |
B.人随太空城自转所需的向心力由人造陆地对人的支持力提供 |
C.太空城内的居民不能运用天平准确测出质量 |
D.太空城绕自己的中心轴转动的角速度越大,太空城的居民受到的“重力”越大 |
在一次探究活动中,某同学设计了如图所示的实验装置,将半径R="1" m的光滑半圆弧轨道固定在质量M="0.5" kg、长L="4" m的小车的上表面中点位置,半圆弧轨道下端与小车的上表面水平相切,现让位于轨道最低点的质量m="0.1" kg的光滑小球随同小车一起沿光滑水平面向右做匀速直线运动,某时刻小车碰到障碍物而瞬时处于静止状态(小车不反弹),之后小球离开圆弧轨道最高点并恰好落在小车的左端边沿处,该同学通过这次实验得到了如下结论,其中正确的是(g取10 m/s2) ( )
A.小球到达最高点的速度为![]() |
B.小车与障碍物碰撞时损失的机械能为12.5 J |
C.小车瞬时静止前、后,小球在轨道最低点对轨道的压力由1 N瞬时变为6.5 N |
D.小车向右做匀速直线运动的速度约为6.5 m/s |
试题篮
()