半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v0,若v0大小不同,则小球能够上升到的最大高度(距离底部)也不同.下列说法中正确的是( )
A.如果v0=,则小球能够上升的最大高度等于R/2 |
B.如果v0=,则小球能够上升的最大高度小于3R/2 |
C.如果v0=,则小球能够上升的最大高度等于2R |
D.如果v0=,则小球能够上升的最大高度等于2R |
如图所示的xOy坐标系中,x轴上固定一个点电荷Q,y轴上固定一根光滑绝缘细杆(细杆的下端刚好在坐标原点O处),将一个套在杆上重力不计的带电圆环(视为质点)从杆上P处由静止释放,圆环从O处离开细杆后恰好绕点电荷Q做圆周运动。下列说法正确的是( )
A.圆环沿细杆从P运动到O的过程中,速度可能先增大后减小 |
B.圆环沿细杆从P运动到O的过程中,加速度可能先增大后减小 |
C.增大圆环所带的电荷量,其他条件不变,圆环离开细杆后仍然能绕点电荷做圆周运动 |
D.将圆环从杆上P的上方由静止释放,其他条件不变,圆环离开细杆后仍然能绕点电荷做圆周运动 |
如图所示为在空中某一水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是( )。
A.摆球A受重力、拉力和向心力的作用 |
B.摆球A受拉力和向心力的作用 |
C.摆球A受拉力和重力的作用 |
D.摆球A受重力和向心力的作用 |
设地球自转周期为T,质量为M。引力常量为G。假设地球可视为质量均匀分布的球体,半径为R。同一物体在南极和赤道水平面上静止时所受到的支持力之比为
A. | B. | C. | D. |
三个人造卫星A.B.C在地球的大气层外沿如图所示的方向做匀速圆周运动,已知,则关于三个卫星的说法中错误的是
A.线速度大小的关系是
B.周期关系是
C.向心力大小的关系是
D.轨道半径和周期的关系是
如图所示,用长为L的细绳拴着质量为m的小球在竖直平面内做完整的圆周运动,则下列说法中正确的是( )
A.小球运动到最高点时所受的向心力不一定等于重力 |
B.小球在最高点时绳子的拉力不可能为零 |
C.小球运动到最高点的速率一定大于 |
D.小球经过最低点时绳子的拉力一定大于小球重力 |
如图所示,有一固定的且内壁光滑的半球面,球心为 O,最低点为 C,在其内壁上有两个质量相同的小球(可视为质点)A 和 B,在两个高度不同的水平面内做匀速圆周运动,A 球的轨迹平面高于 B 球的轨迹平面,A、B 两球与 O 点的连线与竖直线 OC 间的夹角分别为α=53°和β=37°,以最低点 C 所在的水平面为重力势能的参考平面,( sin 37°= , cos 37°= )则( )
A.A、B 两球所受支持力的大小之比为 4 ∶3
B.A、B 两球运动的周期之比为 4 ∶3
C.A、B 两球的动能之比为 16 ∶9
D.A、B 两球的机械能之比为 112 ∶51
如图(a)所示,A、B为钉在光滑水平面上的两根铁钉,小球C用细绳拴在铁钉B上(细绳能承受足够大的拉力),A、B、C在同一直线上。t=0时,给小球一个垂直于绳的速度,使小球绕着两根铁钉在水平面上做圆周运动。在0≤t≤10s时间内,细绳的拉力随时间变化的规律如图(b)所示,则下列说法中正确的有( )
A.两钉子间的距离为绳长的1/6
B.t=10.5s时细绳拉力的大小为6N
C.t=14s时细绳拉力的大小为10N
D.细绳第三次碰钉子到第四次碰钉子的时间间隔为3s
如图所示,质量为m小球在竖直放置的光滑圆形管道内做圆周运动,球的直径略小于圆管的内径,下列说法中可能正确的是
A.小球通过最低点时,外侧管壁对小球的支持力为2mg |
B.小球通过最高点时,外侧管壁对小球的压力为2mg |
C.小球通过最高点时,内侧管壁对小球的支持力为2mg |
D.小球通过最低点时,内侧管壁对小球的压力为2mg |
如图所示,甲、乙两水平圆盘紧靠在一块,甲圆盘为主动轮,乙靠摩擦随甲无打滑转动.甲圆盘与乙圆盘的半径之比为r甲∶r乙=2∶1,两圆盘和小物体m1、m2之间的动摩擦因数相同,m1距O点为2r,m2距O′点为r,当甲缓慢转动起来且转速慢慢增加时( ).
A.与圆盘相对滑动前m1与m2的角速度之比ω1∶ω2=2∶1 |
B.与圆盘相对滑动前m1与m2的向心加速度之比a1∶a2=1∶2 |
C.随转速慢慢增加,m1先开始滑动 |
D.随转速慢慢增加,m2先开始滑动 |
一杂技演员骑摩托车沿一竖直圆形轨道做特技表演,如图所示.A、C两点分别是轨道的最低点和最高点,B、D分别为两侧的端点, 若运动中速率保持不变,人与车的总质量为m,设演员在轨道内逆时针运动.下列说法正确的是( )
A.人和车的向心加速度大小不变
B.摩托车通过最低点A时,轨道受到的压力可能等于mg
C.由D点到A点的过程中,人始终处于超重状态
D.摩托车通过A、C两点时,轨道受到的压力完全相同
如图所示,一个内壁光滑的圆锥形筒的轴线垂直于水平面,圆锥筒固定,有质量相等的小球A和B沿着筒的内壁在水平面内作匀速圆周运动,A的运动半径较大,则下列说法正确的是
A.球A的线速度小于球B的线速度 |
B.球A的角速度大于球B的角速度 |
C.球A的加速度等于球B的加速度 |
D.球A对筒壁的压力大小大于球B对筒壁的压力大小 |
如图所示,细绳的一端固定在O点,另一端系一质量为m的小球(可视为质点),当小球在竖直平面内沿逆时针方向做圆周运动时,通过传感器测得轻绳拉力FT与轻绳与竖直方向OP的夹角θ满足关系式FT=a+bcos θ,式中a、b为常数。若不计空气阻力,则当地的重力加速度为( )
A. | B. | C. | D. |
赤道上随地球自转的物体A,赤道上空的近地卫星B,地球的同步卫星C,它们的运动都可以视为匀速圆周运动.分别用a、v、T、ω表示物体的向心加速度、速度、周期和角速度,下列判断正确的是( )
A.aA>aB>aC | B.vB>vC>vA | C.TA>TB>TC | D.ωA>ωC>ωB |
人类向宇宙空间发展最具可能的是在太阳系内地球附近建立“太空城”。设想中的一个圆柱形太空城,其外壳为金属材料,长,直径,内壁沿纵向分隔成6个部分,窗口和人造陆地交错分布,陆地上覆盖厚的土壤,窗口外有巨大的铝制反射镜,可调节阳光的射入,城内部充满空气、太空城内的空气、水和土壤最初可从地球和月球运送,以后则在太空城内形成与地球相同的生态环境。为了使太空城内的居民能如地球上一样具有“重力”,以适应人类在地球上的行为习惯,太空城将在电力的驱动下,绕自己的中心轴以一定的角速度转动。如图为太空城垂直中心轴的截面,以下说法正确的有
A.太空城内物体所受的“重力”一定通过垂直中心轴截面的圆心 |
B.人随太空城自转所需的向心力由人造陆地对人的支持力提供 |
C.太空城内的居民不能运用天平准确测出质量 |
D.太空城绕自己的中心轴转动的角速度越大,太空城的居民受到的“重力”越大 |
试题篮
()