16分)如图甲所示,空间存在一垂直纸面向里的水平磁场,磁场上边界OM水平,以O点为坐标原点,OM为x轴,竖直向下为y轴,磁感应强度大小在x方向保持不变、y轴方向按B=ky变化,k为大于零的常数。一质量为m、电阻为R、边长为L的正方形线框abcd从图示位置静止释放,运动过程中线框经络在同一竖直平面内,当线框下降h0(h0<L)高度时达到最大速度,线框cd边进入磁场时开始做匀速运动,重力加速度为g。求:
(1)线框下降h0高度时速度大小v1和匀速运动时速度大小v2;
(2)线框从开始释放到cd边刚进入磁场的过程中产生的电能ΔE;
(3)若将线框从图示位置以水平向右的速度v0抛出,在图乙中大致画出线框上a点的轨迹。
如图34-1所示,AB、CD是两根足够长的固定平行金属导轨,两导轨间距离为l,导轨平面与水平面的夹角为θ.在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B.在导轨的A、C端连接一个阻值为R的电阻.一根垂直于导轨放置的金属棒ab,质量为m,从静止开始沿导轨下滑.求ab棒的最大速度.(已知ab和导轨间的动摩擦因数为μ,导轨和金属棒的电阻不计)
如图所示,光滑曲线导轨足够长,固定在绝缘斜面上,匀强磁场B垂直斜面向上.一导体棒从某处以初速度v0沿导轨面向上滑动,最后又向下滑回到原处.导轨底端接有电阻R,其余电阻不计.下列说法正确的是
A.滑回到原处的速率小于初速度大小v0 |
B.上滑所用的时间等于下滑所用的时间 |
C.上滑过程与下滑过程通过电阻R的电荷量大小相等 |
D.上滑过程通过某位置的加速度大小等于下滑过程中通过该位置的加速度大小 |
如图4所示,实线为电场线,虚线为等势线且AB=BC,电场中的A、B、C三点的场强分别为EA、EB、EC,电势分别为、、,AB、BC间的电势差分别为UAB、UBC,则下列关系中正确的有( )
A.>> | B.EC>EB>EA |
C. UAB<UBC | D. UAB=UBC |
在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的匀强磁场,区域I的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场Ⅰ区时,恰好以速度v1做匀速直线运动;当ab边下滑到JP与MN的中间位置时,线框又恰好以速度v2做匀速直线运动,从ab进入GH到JP与MN的中间位置的过程中,线框的动能变化量大小为△Ek,重力对线框做功大小为W1,安培力对线框做功大小为W2,下列说法中正确的有( )
A.在下滑过程中,由于重力做正功,所以有v2>v1 |
B.在下滑过程中,由于重力做正功但安培力做负功,所以有v2=v1 |
C.从ab进入GH到JP与MN的中间位置的过程中,线框动能的变化量大小为△Ek= W2-W1 |
D.从ab进入GH到JP与MN的中间位置的过程,有(W1-△Ek)机械能转化为电能 |
如下图所示,水平地面上方的H高区域内有匀强磁场,水平界面PP′是磁场的上边界,磁感应强度为B,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd,ab长为l1,bc长为l2,H>l2,线框的质量为m、电阻为R.现使线框abcd从高处自由落下,ab边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab边到达边界PP′为止.从线框开始下落到cd边刚好到达水平地面的过程中,线框中产生的焦耳热为Q.求:
(1)线框abcd在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?
(2)线框是从cd边距边界PP′多高处开始下落的?
(3)线框的cd边到达地面时线框的速度大小是多少?
右图所示,为两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度匀速穿过磁场区域,以初始位置为计时起点,规定:电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量的方向为正,外力F向右为正。则以下关于线框中的感应电动势E、磁通量、电功率P和外力F随时间变化的图象正确的是:
弹簧的上端固定,下端悬挂一根质量为m的磁铁,在磁铁下端放一个固定的闭合金属线圈.将磁铁抬到弹簧原长处由静止开始释放,使磁铁上下振动时穿过线圈.已知弹簧的劲度系数为k,弹簧的伸长量x与弹性势能的关系式为Ep=kx2/2,则线圈产生的焦耳热的总量是__________.
如图(a)所示,间距为L电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放。在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好。
已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为L,在t=tx时刻(tx未知)ab棒恰好进入区域Ⅱ,重力加速度为g。求:
(1)区域I内磁场的方向;
(2)通过cd棒中的电流大小和方向;
(3)ab棒开始下滑的位置离区域Ⅱ上边界的距离;
(4)ab棒开始下滑至EF的过程中,回路中产生总的热量。(结果用B、L、θ、m、R、g表示)
如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。测得金属线框中的电流随时间变化的图像如乙图所示,在金属线框被拉出的过程中。
⑴求通过线框导线截面的电量及线框的电阻;
⑵写出水平力F随时间变化的表达式;
⑶已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少?
如图(a)所示,光滑的平行长直金属导轨置于水平面内,间距为L、导轨左端接有阻值为R的电阻,质量为m的导体棒垂直跨接在导轨上.导轨和导体棒的电阻均不计,且接触良好.在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为B.开始时,导体棒静止于磁场区域的右端,当磁场以速度v1匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为f的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内.
(1)求导体棒所达到的恒定速度v2;
(2)为使导体棒能随磁场运动,阻力最大不能超过多少?
(3)导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大?
(4)若t=0时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其v﹣t关系如图(b)所示,已知在时刻t导体棒瞬时速度大小为vt,求导体棒做匀加速直线运动时的加速度大小.
一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示。t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动穿过磁场。外力F随时间t变化的图线如图乙所示。已知线框质量m=1kg、电阻R=1Ω。以下说法正确的是
A.做匀加速直线运动的加速度为1m/s2 |
B.匀强磁场的磁感应强度为T |
C.线框穿过磁场过程中,通过线框的电荷量为C |
D.线框穿过磁场的过程中,线框上产生的焦耳热为 1.5J |
如图,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和 P之间接有阻值为R= 3.0Ω的定值电阻,导体棒Lab=0.5m,其电阻为r =1.0Ω ,与导轨接触良好.整个装置处于方向竖直向下的匀强磁场中,B=0.4T。现使ab以v=10m/s的速度向右做匀速运动。
(1)a b中的电流大? a b两点间的电压多大?
(2)维持a b做匀速运动的外力多大?
(3)a b向右运动1m的过程中,外力做的功是多少?电路中产生的热量是多少?
如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ,导轨间距L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上。将甲乙两个电阻相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L。从静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨的外力F,使甲金属杆始终沿导轨向下做匀加速直线运动,加速度大小为gsinθ,乙金属杆刚进入磁场时作匀速运动。
(1)求金属杆乙刚进入磁场时的速度.
(2)自刚释放时开始计时,写出从开始到甲金属杆离开磁场,外力F随时间t的变化关系,并说明F的方向.
(3)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.
如图所示,MN、PQ是相互交叉成60°角的光滑金属导轨,O是它们的交点且接触良好.两导轨处在同一水平面内,并置于有理想边界的匀强磁场中(图中经过O点的虚线即为磁场的左边界).导体棒ab与导轨始终保持良好接触,并在弹簧S的作用下沿导轨以速度v0向左匀速运动.已知在导体棒运动的过程中,弹簧始终处于弹性限度内.磁感应强度的大小为B,方向如图.当导体棒运动到O点时,弹簧恰好处于原长,导轨和导体棒单位长度的电阻均为r,导体棒ab的质量为m.求:
(1)导体棒ab第一次经过O点前,通过它的电流大小;
(2)弹簧的劲度系数k;
(3)从导体棒第一次经过O点开始直到它静止的过程中,导体棒ab中产生的热量.
试题篮
()