如图所示,光滑曲线导轨足够长,固定在绝缘斜面上,匀强磁场B垂直斜面向上.一导体棒从某处以初速度v0沿导轨面向上滑动,最后又向下滑回到原处.导轨底端接有电阻R,其余电阻不计.下列说法正确的是
A.滑回到原处的速率小于初速度大小v0 |
B.上滑所用的时间等于下滑所用的时间 |
C.上滑过程与下滑过程通过电阻R的电荷量大小相等 |
D.上滑过程通过某位置的加速度大小等于下滑过程中通过该位置的加速度大小 |
如图所示,矩形线圈在匀强磁场中可以分别绕垂直于磁场方向的轴和以相同的角速度匀速转动,当线圈平面转到与磁场方向平行时()
A. | 线圈绕 转动时的电流等于绕 转动时的电流 |
B. | 线圈绕 转动时的电动势小于绕 转动时的电动势 |
C. | 线圈绕 和 转动时电流的方向相同,都是 |
D. | 线圈绕 转动时 边受到的安培力大于绕 转动时 边受到的安培力 |
如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒、垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。现用一平行于导轨的恒力作用在的中点,使其向上运动。若始终保持静止,则它所受摩擦力可能()
A. |
变为 |
B. | 先减小后不变 |
C. | 等于 | D. | 先增大再减小 |
在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小为B的匀强磁场,区域I的磁场方向垂直斜面向上,区域Ⅱ的磁场方向垂直斜面向下,磁场的宽度均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,t1时 ab边刚越过GH进入磁场Ⅰ区,此时线框恰好以速度 v1做匀速直线运动;t2时ab边下滑到JP与MN的中间位置,此时线框又恰好以速度v2做匀速直线运动。重力加速度为g,下列说法中正确的有:( )
A.t1时,线框具有加速度a=3gsinθ |
B.线框两次匀速直线运动的速度v1: v2=2:1 |
C.从t1到t2过程中,线框克服安培力做功的大小等于重力势能的减少量。 |
D.从t1到t2,有机械能转化为电能。 |
如图所示,两根相距为=1m的足够长的平行光滑金属导轨,位于水平的xOy平面内,一端接有阻值为的电阻.在的一侧存在垂直纸面向里的磁场,磁感应强度B只随x的增大而增大,且它们间的关系为B=x,其中。一质量为m=0.5kg的金属杆与金属导轨垂直,可在导轨上滑动.当t=0时金属杆位于x=0处,速度为=,方向沿x轴的正方向。在运动过程中,有一大小可调节的外力F作用于金属杆,使金属杆以恒定加速度a=沿x轴正方向匀加速直线运动。除电阻R以外其余电阻都可以忽略不计.求:当t=4s时施加于金属杆上的外力为多大。
16分)如图甲所示,空间存在一垂直纸面向里的水平磁场,磁场上边界OM水平,以O点为坐标原点,OM为x轴,竖直向下为y轴,磁感应强度大小在x方向保持不变、y轴方向按B=ky变化,k为大于零的常数。一质量为m、电阻为R、边长为L的正方形线框abcd从图示位置静止释放,运动过程中线框经络在同一竖直平面内,当线框下降h0(h0<L)高度时达到最大速度,线框cd边进入磁场时开始做匀速运动,重力加速度为g。求:
(1)线框下降h0高度时速度大小v1和匀速运动时速度大小v2;
(2)线框从开始释放到cd边刚进入磁场的过程中产生的电能ΔE;
(3)若将线框从图示位置以水平向右的速度v0抛出,在图乙中大致画出线框上a点的轨迹。
如图所示,将边长为a、质量为m、电阻为R的正方形导线框竖直向上抛出,穿过宽度为b、磁感应强度为B的匀强磁场,磁场的方向垂直纸面向里.线框向上离开磁场时的速度刚好是进人磁场时速度的一半,线框离开磁场后继续上升一段高度,然后落下并匀速进人磁场.整个运动过程中始终存在着大小恒定的空气阻力f且线框不发生转动.求:
(1)线框在下落阶段匀速进人磁场时的速度V2;
(2)线框在上升阶段刚离开磁场时的速度V1;
(3)线框在上升阶段通过磁场过程中产生的焦耳热Q.
如图所示,在坐标 xoy 平面内存在 B =2.0T的匀强磁场,OA 与OCA 为置于竖直平面内的光滑金属导轨,其中OCA 满足曲线方程,C为导轨的最右端,导轨OA 与OCA 相交处的O点和A 点分别接有体积可忽略的定值电阻R1 和 R2,其R1 = 4.0Ω、R2 = 12.0Ω。现有一足够长、质量 m = 0.10 kg 的金属棒 M N 在竖直向上的外力F 作用下,以v =3.0m/s的速度向上匀速运动,设棒与两导轨接触良好,除电阻 R1、R2 外其余电阻不计,g 取10m/s2,求:
(1)金属棒 M N 在导轨上运动时感应电流的最大值;
(2)外力F 的最大值;
(3)金属棒 M N 滑过导轨O C 段,整个回路产生的热量。
如图(a)所示,间距为L电阻不计的光滑导轨固定在倾角为θ的斜面上。在区域I内有方向垂直于斜面的匀强磁场,磁感应强度恒为B不变;在区域Ⅱ内有垂直于斜面向下的匀强磁场,其磁感应强度Bt的大小随时间t变化的规律如图(b)所示。t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上也由静止释放。在ab棒运动到区域Ⅱ的下边界EF之前,cd棒始终静止不动,两棒均与导轨接触良好。
已知cd棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域Ⅱ沿斜面的长度为L,在t=tx时刻(tx未知)ab棒恰好进入区域Ⅱ,重力加速度为g。求:
(1)区域I内磁场的方向;
(2)通过cd棒中的电流大小和方向;
(3)ab棒开始下滑的位置离区域Ⅱ上边界的距离;
(4)ab棒开始下滑至EF的过程中,回路中产生总的热量。(结果用B、L、θ、m、R、g表示)
弹簧的上端固定,下端悬挂一根质量为m的磁铁,在磁铁下端放一个固定的闭合金属线圈.将磁铁抬到弹簧原长处由静止开始释放,使磁铁上下振动时穿过线圈.已知弹簧的劲度系数为k,弹簧的伸长量x与弹性势能的关系式为Ep=kx2/2,则线圈产生的焦耳热的总量是__________.
如图,虚线框abcd内为一矩形匀强磁场区域,ab=2bc,a′b′c′d′是一正方形导线框,a′b′与ab平行.若将导线框匀速地拉离磁场区域,以W1表示沿平行于ab方向拉出过程中外力所做的功,W2表示以同样速率沿平行于bc的方向拉出过程中所做的功,则W1=___________W2.
右图所示,为两个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向里和向外,磁场宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度匀速穿过磁场区域,以初始位置为计时起点,规定:电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量的方向为正,外力F向右为正。则以下关于线框中的感应电动势E、磁通量、电功率P和外力F随时间变化的图象正确的是:
如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角θ,导轨间距L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上。将甲乙两个电阻相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L。从静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨的外力F,使甲金属杆始终沿导轨向下做匀加速直线运动,加速度大小为gsinθ,乙金属杆刚进入磁场时作匀速运动。
(1)求金属杆乙刚进入磁场时的速度.
(2)自刚释放时开始计时,写出从开始到甲金属杆离开磁场,外力F随时间t的变化关系,并说明F的方向.
(3)若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.
如图,水平面上有两根相距0.5m的足够长的平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和 P之间接有阻值为R= 3.0Ω的定值电阻,导体棒Lab=0.5m,其电阻为r =1.0Ω ,与导轨接触良好.整个装置处于方向竖直向下的匀强磁场中,B=0.4T。现使ab以v=10m/s的速度向右做匀速运动。
(1)a b中的电流大? a b两点间的电压多大?
(2)维持a b做匀速运动的外力多大?
(3)a b向右运动1m的过程中,外力做的功是多少?电路中产生的热量是多少?
试题篮
()