如图所示,Ⅰ、Ⅲ为两匀强磁场区域,Ⅰ区域的磁场方向垂直纸面向里,Ⅲ区域的磁场方向垂直纸面向外,磁感强度为B,两区域中间为宽为s的无磁场区域Ⅱ,有一边长为L(L>s)、电阻为R的正方形金属框abcd置于Ⅰ区域,ab边与磁场边界平行,现拉着金属框以速度v向右匀速移动。
(1)分别求出ab边刚进入中央无磁场区域Ⅱ和刚进入磁场区域Ⅲ时,通过ab边的电流大小和方向。
(2)把金属框从Ⅰ区域完全拉入Ⅲ区域过程中拉力所做的功。
横截面积S="0.2" m2、n=100匝的圆形线圈A处在如图所示的磁场内,磁感应强度变化率为0.02 T/s.开始时S未闭合,R1="4" Ω,R2=6Ω,C="30" μF,线圈内阻不计,求:
(1)闭合S后,通过R2的电流的大小;
(2)闭合S后一段时间又断开,问S断开后通过R2的电荷量是多少?
某同学用如图所示装置研究感应电流的方向与引起感应电流的磁场方向的关系。已知电流从接线柱流入电流表时,电流表指针左偏。实验是地,磁场方向、磁铁运动情况及电流表指针偏转情况部分已记录在下表中。请依据电磁感应规律填定空出的部分。
实验序号 |
磁场方向 |
磁铁运动情况 |
指针偏转情况 |
1 |
向下 |
插入 |
左偏 |
2 |
|
拔出 |
右偏 |
3 |
向上 |
|
右偏 |
4 |
向上 |
拔出 |
|
如图所示,位于一水平面内的、两根平行的光滑金属导轨,处在匀强磁场中,磁场方向垂直于导轨所在的平面,导轨的一端与一电阻相连;具有一定质量的金属杆ab放在导轨上并与导轨垂直。现用一平行于导轨的恒力F拉ab,使它由静止开始向右运动。杆和导轨的电阻、感应电流产生的磁场均可不计。用E表示回路中的感应电动势,i表示回路中的感应电流,在i随时间增大的过程中,电阻消耗的功率
A.等于F的功率 | B.等于安培力的功率的绝对值 |
C.等于F与安培力合力的功率 | D.小于iE |
两根水平平行固定的光滑金属导轨间距为L,足够长,在其上放置两根长为L且与导轨垂直的金属棒ab和cd,它们的质量分别为2m和m,电阻均为R(其它电阻不计),整个装置处在磁感应强度大小为B、方向竖直向下的匀强磁场中,如图12-2-20所示.现使金属棒cd获得瞬时水平向右的初速度v0,当它们的运动状态达到稳定的过程中,流过金属棒ab的电量q和两棒间增加的位移△x分别为( )
A.q=2mv0/3BL B.q=3mv0/2BL
C. D.
如图所示,足够长的水平导体框架的宽度L="0.5" m,电阻忽略不计,定值电阻R=2Ω。磁感应强度B="0.8" T的匀强磁场方向垂直于导体框平面,一根质量为m="0.2" kg、有效电阻r=2Ω的导体棒MN垂直跨放在框架上,该导体棒与框架间的动摩擦因数μ=0.5,导体棒在水平恒力F=1.2N的作用下由静止开始沿框架运动到刚开始匀速运动时,通过导体棒截面的电量共为q="2" C,求:
(1)导体棒做匀速运动时的速度;
(2)导体棒从开始运动到刚开始匀速运动这一过程中,导体棒产生的电热。(g取10 m/s2)
一个直流电动机的内电阻,与R=8的电阻串联接在线圈上,如图所示。已知线圈面积为m2,共100匝,线圈的电阻为2欧,线圈在T的匀强磁场中绕O以转速n=600r/min匀速转动时,在合上开关S后电动机正常工作时,电压表的示数为100V,求电动机正常工作时的输出功率。
(07。广东物理卷)如图(a)所示,一端封闭的两条平行光滑导轨相距L,距左端L处的中间一段被弯成半径为H的1/4圆弧,导轨左右两段处于高度相差H的水平面上。圆弧导轨所在区域无磁场,右段区域存在磁场B0,左段区域存在均匀分布但随时间线性变化的磁场B(t),如图(b)所示,两磁场方向均竖直向上。在圆弧顶端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路。从金属棒下滑开始计时,经过时间t0滑到圆弧底端。设金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g。
(1)问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?
(2)求0到时间t0内,回路中感应电流产生的焦耳热量。
(3)探讨在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,回路中感应电流的大小和方向。
(06江苏物理卷)如图所示,顶角θ=45°,的金属导轨MON固定在水平面内,导轨处在方向竖直、磁感应强度为B的匀强磁场中。一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON向左滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均匀为r。导体棒与导轨接触点的a和b,导体棒在滑动过程中始终保持与导轨良好接触。t=0时,导体棒位于顶角O处,求:
(1)t时刻流过导体棒的电流强度I和电流方向。
(2)导体棒作匀速直线运动时水平外力F的表达式。
(3)导体棒在0~t时间内产生的焦耳热Q。
(4)若在t0时刻将外力F撤去,导体棒最终在导轨上静止时的坐标x。
(05天津理综卷)图中MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计。导轨所在平面与磁感应强度B为0.50T的匀强磁场垂直。质量m为6.0×10-3kg、电阻为1.0Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有滑动变阻器和阻值为3.0Ω的电阻R1。当杆ab达到稳定状态时以速率v匀速下滑,整个电路消耗的电功率P为0.27W,重力加速度取10m/s2,试求速率v和滑动变阻器接入电路部分的阻值R2。
如图()所示,光滑的平行长直金属导轨置于水平面内,间距为、导轨左端接有阻值为的电阻,质量为的导体棒垂直跨接在导轨上。导轨和导体棒的电阻均不计,且接触良好。在导轨平面上有一矩形区域内存在着竖直向下的匀强磁场,磁感应强度大小为。开始时,导体棒静止于磁场区域的右端,当磁场以速度匀速向右移动时,导体棒随之开始运动,同时受到水平向左、大小为的恒定阻力,并很快达到恒定速度,此时导体棒仍处于磁场区域内。
(1)求导体棒所达到的恒定速度;
(2)为使导体棒能随磁场运动,阻力最大不能超过多少?
(3)导体棒以恒定速度运动时,单位时间内克服阻力所做的功和电路中消耗的电功率各为多大?
(4)若时磁场由静止开始水平向右做匀加速直线运动,经过较短时间后,导体棒也做匀加速直线运动,其关系如图()所示,已知在时刻导体棒瞬时速度大小为,求导体棒做匀加速直线运动时的加速度大小。
如图9甲所示,在倾角为的斜面上固定有两根足够长的平行光滑导轨,轨距为L,金属导体棒ab垂直于两根轨道放在导轨上,导体ab的质量为m,电阻为R,导轨电阻不计,空间有垂直于导轨平面的匀强磁场,磁感应强度为B。当金属导体ab由静止开始向下滑动一段时间t0,再接通开关S,则关于导体ab运动的v—t图象(如图10乙所示)可能正确的是( )
如图所示,螺线管与相距L的两竖直放置的导轨相连,导轨处于垂直纸面向外、磁感应强度为B0的匀强磁场中。金属杆ab垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动。螺线管横截面积为S,线圈匝数为N,电阻为R1,管内有水平向左的变化磁场。已知金属杆ab的质量为m,电阻为R2,重力加速度为g.不计导轨的电阻,不计空气阻力,忽略螺线管磁场对杆ab的影响。
(1)为使ab杆保持静止,求通过ab的电流的大小和方向;
(2)当ab杆保持静止时,求螺线管内磁场的磁感应强度B的变化率;
(3)若螺线管内方向向左的磁场的磁感应强度的变化率(k>0)。将金属杆ab由静止释放,杆将向下运动。当杆的速度为v时,仍在向下做加速运动。求此时杆的加速度的大小。设导轨足够长。
如图甲所示,在水平桌面上固定着两根相距20cm、相互平行的无电阻轨道P和Q,轨道一端固定一根电阻为0.0l的导体棒a,轨道上横置一根质量为40g、电阻为0.0lΩ的金属棒b,两棒相距20cm.该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中.开始时,磁感应强度B0=0.10T(设棒与轨道间的最大静摩擦力和滑动摩擦力相等,g取10m/s2)
(1)若保持磁感应强度Bo的大小不变,从t=O时刻开始,给b棒施加一个水平向右的拉力,使它做匀加速直线运动.此拉力F的大小随时问t变化关系如图乙所示.求匀加速运动的加速度及b棒与导轨间的滑动摩擦力.
(2)若从某时刻t=0开始,按图丙中磁感应强度B随时间t变化图象所示的规律变化,求在金属棒b开始运动前,这个装置释放的热量是多少?
图中a1b1c1d1和a2b2c2d2为在同一竖直面内的金属导轨,处在磁感应强度为B的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里。导轨的a1b1段与a2b2段是竖直的,距离为l1;c1d1段与c2d2段也是竖直的,距离为l2。x1y1与x2y2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m1和m2,它们都垂直于导轨并与导轨保持光滑接触。两杆与导轨构成的回路的总电阻为R。F为作用于金属杆x1y1上的竖直向上的恒力。已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率。
试题篮
()