如图所示,平行板电容器的两个极板A、B分别接在电压为60V的恒压源上,两板间距为3cm,电容器带电荷量为6×10-8 C,A极板接地.求:
(1)平行板电容器的电容;
(2)平行板电容器两板之间的电场强度;
(3)距B板为2cm的C点处的电势;
(4)将一个电荷量为q=8×10-9 C的正点电荷从B板移到A板电场力所做的功.
如图所示,平行板电容器的两个极板A、B分别接在电压为60V的恒压源上,两板间距为3cm,电容器带电荷量为6×10-8 C,A极板接地.求:
(1)平行板电容器的电容;
(2)平行板电容器两板之间的电场强度;
(3)距B板为2cm的C点处的电势;
(4)将一个电荷量为q=8×10-9 C的正点电荷从B板移到A板电场力所做的功.
如图所示,足够长的光滑平行金属导轨MN、PQ倾斜放置,两导轨间距离为L,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m的金属棒ab垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab的电阻,重力加速度为g。若在导轨的M、P两端连接阻值R的电阻,将金属棒ab由静止释放,则在下滑的过程中,金属棒ab沿导轨下滑的稳定速度为v,若在导轨 M、P两端将电阻R改接成电容为C的电容器,仍将金属棒ab由静止释放,金属棒ab下滑时间t,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度的大小为多少?
(2)金属棒ab下滑ts末的速度?
两根光滑的长直金属导轨MN、M′N′平行置于同一水平面内,导轨间距为L,电阻不计,M、M′处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。长度也为L、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中.ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求:
(1)ab运动速度v的大小;
(2)电容器所带的电荷量q.
如图所示,电源电动势E=9V,内阻r=0.5Ω,电阻R1=5.0Ω,R2=3.5Ω,R3=6.0Ω,R4=3.0Ω,电容C=2.0μF。两板间距离为0.17 m。
(1)求电键接到a时,电容的带电量是多少?上极板带何种电荷?
(2)求电键从与a接触到与b接触时,通过R3的电荷量是多少?上极板带何种电荷?
(3)若两极板中央有一个带电粒子,当电键与a接触时,正好处于静止状态,若电键与b接触后,带电粒子向哪极板运动?经过多长时间到达极板?(不考虑电容充放电时间,g=10m/s2)
(14分)水平放置的平行板电容器,板间距离为d,极板足够长,当其带电荷量为Q时,沿两板中央水平射入的带电荷量为q的小球恰好做匀速直线运动。若使电容器电量增大一倍,则该带电小球由两板中央落到某一极板上所需时间为多少?(已知重力加速度g)
质量为m的飞机模型,在水平跑道上由静止匀加速起飞,假定起飞过程中受到的平均阻力恒为飞机所受重力的k倍,发动机牵引力恒为F,离开地面起飞时的速度为v,重力加速度为g。求:
(1)飞机模型的起飞距离(离开地面前的运动距离)
(2)若飞机起飞利用电磁弹射技术,将大大缩短起飞距离。图甲为电磁弹射装置的原理简化示意图,与飞机连接的金属块(图中未画出)可以沿两根相互靠近且平行的导轨无摩擦滑动。使用前先给电容为C的大容量电容器充电,弹射飞机时,电容器释放储存电能所产生的强大电流从一根导轨流入,经过金属块,再从另一根导轨流出;导轨中的强大电流形成的磁场使金属块受磁场力而加速,从而推动飞机起飞。
①在图乙中画出电源向电容器充电过程中电容器两极板间电压u与极板上所带电荷量q的图象,在此基础上求电容器充电电压为U0时储存的电能;
②当电容器充电电压为Um时弹射上述飞机模型,在电磁弹射装置与飞机发动机同时工作的情况下,可使起飞距离缩短为x。若金属块推动飞机所做的功与电容器释放电能的比值为η,飞机发动的牵引力F及受到的平均阻力不变。求完成此次弹射后电容器剩余的电能。
如图所示,E=10 V,=4 Ω,R2=6 Ω,C=30μF,电池内阻可忽略.
(1)闭合开关K,求稳定后通过的电流;
(2)然后将开关K断开,求这以后通过的总电量.
如图所示,充电后的平行板电容器水平放置,电容为,极板间的距离为,上板正中有一小孔。质量为、电荷量为的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为)。求:
(1)小球到达小孔处的速度;
(2)极板间电场强度的大小和电容器所带电荷量;
(3)小球从开始下落运动到下极板处的时间。
如图所示,匀强磁场的方向垂直于光滑的金属导轨平面向里,极板间距为d的平行板电容器与总阻值为2R0的滑动变阻器通过平行导轨连接,电阻为R0的导体棒MN可在外力的作用下沿导轨从左向右做匀速直线运动。当滑动变阻器的滑动触头位于a、b的中间位置且导体棒MN的速度为v0时,位于电容器中P点的带电油滴恰好处于静止状态。若不计摩擦和平行导轨及导线的电阻,各接触处接触良好,重力加速度为g,则下列判断正确的是
A.油滴带正电荷 |
B.若将上极板竖直向上移动距离d,油滴将向上加速运动,加速度a = g/2 |
C.若将导体棒的速度变为2v0,油滴将向上加速运动,加速度a = g |
D.若保持导体棒的速度为v0不变,而将滑动触头置于a端,同时将电容器上极板向上移动距离d/3,油滴仍将静止 |
能的转化与守恒是自然界普遍存在的规律,如:电源给电容器的充电过程可以等效为将电荷逐个从原本电中性的两极板中的一个极板移到另一个极板的过程. 在移动过程中克服电场力做功,电源的电能转化为电容器的电场能.实验表明:电容器两极间的电压与电容器所带电量如图所示.
(1)对于直线运动,教科书中讲解了由v-t图像求位移的方法.请你借鉴此方法,根据图示的Q-U图像,若电容器电容为C,两极板间电压为U,求电容器所储存的电场能.
(2)如图所示,平行金属框架竖直放置在绝缘地面上.框架上端接有一电容为C的电容器.框架上一质量为m、长为L的金属棒平行于地面放置,离地面的高度为h.磁感应强度为B的匀强磁场与框架平面相垂直.现将金属棒由静止开始释放,金属棒下滑过程中与框架接触良好且无摩擦.开始时电容器不带电,不计各处电阻.
求a. 金属棒落地时的速度大小
b. 金属棒从静止释放到落到地面的时间
如图所示电路,电源电动势E=12V,内阻r=1Ω。外电路中电阻R1=2Ω,R2=3Ω,R3=7.5Ω。电容器的电容C=2μF。求:
(1)电键S闭合时,电路稳定时电容器所带的电量;
(2)电键从闭合到断开,流过电流表A的电量。
如图甲所示是电容器充、放电电路.配合电流传感器,可以捕捉瞬间的电流变化,并通过计算机画出电流随时间变化的图象.实验中选用直流8 V电源,电容器选用电解电容器.先使单刀双掷开关S与1端相连,电源向电容器充电,这个过程可瞬间完成.然后把单刀双掷开关S掷向2端,电容器通过电阻R放电,传感器将电流传入计算机,图象上显示出放电电流随时间变化的I-t曲线,如图乙所示.以下说法正确的是( )
A.电解电容器用氧化膜做电介质,由于氧化膜很薄,所以电容较小 |
B.随着放电过程的进行,该电容器两极板间电压逐渐减小 |
C.由传感器所记录的该放电电流图象可以估算出该过程中电容器的放电电荷量 |
D.通过本实验可以估算出该电容器的电容值 |
如图所示,电源电动势E=12 V,内阻r=1 Ω,电阻R1=3 Ω,R2=2 Ω,R3=5 Ω,电容器的电容C1=4 μF,C2=1 μF,求C1、C2所带电荷量。
试题篮
()