如图所示是测量带电粒子质量的仪器工作原理示意图。设法使某有机化合物的气态分子导入图中所示的容器A中,使它受到电子束轰击,失去一个电子变成正一价的分子离子。分子离子从狭缝s1以很小的速度进入电压为U的加速电场区(初速不计),加速后,再通过狭缝S2、S3、方向垂直于磁场区的界面PQ,方向垂直于磁场区的界面PQ,射入磁感强度为B的匀强磁场。最后,分子离子打到感光片上,形成垂直于纸面而且平行于狭缝s3的细线。若测得细线到狭缝s3的距离为d,试导出分子离子的质量m的表达式。
如图所示,虚线MO与水平线PQ相交于O,二者夹角θ=30°,在MO左侧存在电场强度为E、方向竖直向下的匀强电场,MO右侧某个区域存在磁感应强度为B、垂直纸面向里的匀强磁场,O点处在磁场的边界上.现有一群质量为m、电量为+q的带电粒子在纸面内以速度v()垂直于MO从O点射入磁场,所有粒子通过直线MO时,速度方向均平行于PQ向左.不计粒子的重力和粒子间的相互作用力,求:
速度最大的粒子自O点射入磁场至返回水平线POQ所用的时间.
磁场区域的最小面积.
根据你以上的计算可求出粒子射到PQ上的最远点离O的距离,请写出该距离的大小(只要写出最远距离的最终结果,不要求写出解题过程)
三个质子1、2和3分别以大小相等、方向如图所示的初速度v1、v2和v3经过平板MN上的小孔O射入匀强磁场B,磁场方向垂直纸面向里,整个装置处在真空中,且不计重力。最终这三个质子打到平板MN上的位置到小孔的距离分别为s1、s2和s3,则
A.s1<s2<s3 | B.s2>s3>s1 | C.s1=s3>s2 | D.s1=s3<s2 |
如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°。已知偏转电场中金属板长L=,圆形匀强磁场的半径R=,重力忽略不计。求:
带电微粒经U1=100V的电场加速后的速率;
两金属板间偏转电场的电场强度E;
匀强磁场的磁感应强度的大小。
一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
如图所示,在x-o-y坐标系中,以(r,0)为圆心、r为半径的圆形区域内存在匀强磁场,磁场的磁感应强度大小为B,方向垂直于纸面向里。在y > r的足够大的区域内,存在沿y轴负方向的匀强电场,场强大小为E。从O点以相同速率向不同方向发射质子,质子的运动轨迹均在纸面内,且质子在磁场中运动的轨迹半径也为r。已知质子的电荷量为q,质量为m,不计质子所受重力及质子间相互作用力的影响。
求质子射入磁场时速度的大小;
若质子沿x轴正方向射入磁场,求质子从O点进入磁场到第二次离开磁场经历的时间;
若质子沿与x轴正方向成夹角θ的方向从O点射入第一象限的磁场中,求质子在磁场中运动的总时间。
用绝缘细线悬挂一个质量为m,带电荷量为+q的小球,让它处于如图所示的磁感应强度为B的匀强磁场中.由于磁场的运动,小球静止在如图位置,这时悬线与竖直方向夹角为α,并被拉紧,则磁场的运动速度大小和方向可能是 ( )
A.v=,水平向右 | B.v=,水平向左 |
C.,竖直向上 | D.v=,竖直向下 |
如图所示,在半径为R的圆形匀强磁场,磁感应强度为B,方向垂直于圆平面向里,PQ为磁场圆的一直径。比荷相同不计重力的负离子a和b以相同速率,由P点在纸平面内分别与PQ夹和沿PQ射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是( )
A.离子射出磁场时动能一定相等 |
B.离子射出磁场时速度一定不同 |
C.如果离子a从Q点射出磁场,则离子b在磁场中的运动半径为R |
D.如果离子b射出磁场时偏转角为900, 则离子a和b在磁场中的运动时间比为4:3 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:
(1)带电粒子离开磁场时的偏转角θ多大?
(2)带电粒子在磁场中运动多长时间?
如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进人磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )
A.,正电荷 | B.,正电荷 | C.,负电荷 | D.,负电荷 |
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:
(1)点电荷a从射出到经过G点所用的时间;
(2)点电荷b的速度大小.
带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛仑兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )
A.可能做直线运动 | B.可能做匀减速运动 |
C.一定做曲线运动 | D.可能做匀速圆周运动 |
如图所示.带正电粒子的质量为m,以速度v沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B,磁场的宽度为,若带电粒子离开磁场时的速度偏转角,不计带电粒子的重力
(1)求带电粒子的电荷量
(2)求带电粒子在磁场中运动的时间
如图所示,带有正电荷的A粒子和B粒子先后以同样大小的速度从宽度为d的有界匀强磁场的边界上的O点分别以30°和60°(与边界的夹角)射入磁场,又都恰好不从另一边界飞出,则下列说法中正确的是( )
A.A、B两粒子在磁场中做圆周运动的半径之比是
B.A、B两粒子在磁场中做圆周运动的半径之比是
C.A、B两粒子之比是
D.A、B两粒子之比是
试题篮
()