如图所示,以直角三角形AOC为边界的有界匀强磁场区域,磁感应强度为B,A.=60, AO=L,在O点放置一个粒子源,可以向各个方向发射某种带负电粒子。已知粒子的比荷为,发射速度大小都为。设粒子发射方向与OC边的夹角为,不计粒子间相互作用及重力。对于粒子进入磁场后的运动,下列说法正确的是
A.当=45时,粒子将从AC边射出
B.所有从OA边射出的粒子在磁场中运动时间相等
C.随着角的增大,粒子在磁场中运动的时间先变大后变小
D.在AC边界上只有一半区域有粒子射出
如图所示,一个质子和一个α粒子先后垂直磁场方向进入一个有理想边界的匀强磁场区域,它们在磁场中的运动轨迹完全相同,都是以图中的O点为圆心的半圆.已知质子与α粒子的电荷量之比q1∶q2=1∶2,质量之比m1∶m2=1∶4,则以下说法中正确的是( )
A.它们在磁场中运动时的动能相等 |
B.它们在磁场中所受到的向心力大小相等 |
C.它们在磁场中运动的时间相等 |
D.它们在磁场中运动时的质量与速度的乘积大小相等 |
在如图所示的同心圆环形区域内有垂直于圆环面的匀强磁场,磁场的方向如图,两同心圆的半径分别为R0、2R0。将一个质量为m(不计重力),电荷量为+q的粒子通过一个电压为U的电场加速后从P点沿内圆的切线进入环形磁场区域。欲使粒子始终在磁场中运动,求匀强磁场的磁感应强度大小的范围。
如图所示,x轴上方有一匀强磁场,磁感应强度的方向垂直于纸面向里,大小为B,x轴下方有一匀强电场,电场强度的大小为E,方向与y轴的夹角θ为450且斜向上方. 现有一质量为m电量为q的正离子,以速度v0由y轴上的A点沿y轴正方向射入磁场,该离子在磁场中运动一段时间后从x轴上的C点(图中未画出)进入电场区域,该离子经C点时的速度方向与x轴夹角为450. 不计离子的重力,设磁场区域和电场区域足够大.求:
(1)C点的坐标
(2)离子从A点出发到第三次穿越x轴时的运动时间
(3)离子第四次穿越x轴时速度的大小及速度方向与电场方向的夹角(求出正切值即可)
如图所示,条形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场,磁感应强度B的大小均为0.3T,AA′、BB′、CC′、DD′为磁场边界,它们相互平行,条形区域的长度足够长,磁场宽度及BB′、CC′之间的距离d=1m。一束带正电的某种粒子从AA′上的O点以沿与AA′成60°角、大小不同的速度射入磁场,当粒子的速度小于某一值v0时,粒子在区域Ⅰ内的运动时间均为t0=4×10-6s;当粒子速度为v1时,刚好垂直边界BB′射出区域Ⅰ。取π≈3,不计粒子所受重力。 求:
(1)粒子的比荷q/m;
(2)速度v0和v1的大小;
(3)速度为v1的粒子从O到DD′所用的时间。
一电子经加速电场加速后,垂直射入一匀强磁场区域,如图所示,电子从磁场边界射出时的偏角随加速电压U和磁感应强度的变化关系为
A.U增大时增大 | B.U增大时减小 | C.B增大时增大 | D.B增大时减小 |
如图所示,半径为的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为,速度大小为。则粒子在磁场中运动的最长时间为
A. | B. | C. | D. |
如图所示,在垂直纸面向里的水平匀强磁场中,水平放置一根粗糙绝缘细直杆,有一个重力不能忽略、中间带有小孔的带正电小球套在细杆上。现在给小球一个水平向右的初速度v0,假设细杆足够长,小球在运动过程中电荷量保持不变,杆上各处的动摩擦因数相同,则小球运动的速度v与时间t的关系图像可能是
如图所示,在半径为R的圆形匀强磁场,磁感应强度为B,方向垂直于圆平面向里,PQ为磁场圆的一直径。比荷相同不计重力的负离子a和b以相同速率,由P点在纸平面内分别与PQ夹和沿PQ射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是( )
A.离子射出磁场时动能一定相等 |
B.离子射出磁场时速度一定不同 |
C.如果离子a从Q点射出磁场,则离子b在磁场中的运动半径为R |
D.如果离子b射出磁场时偏转角为900, 则离子a和b在磁场中的运动时间比为4:3 |
如图a、b、c为三个完全相同的带正电荷的油滴,在真空中从相同高度由静止下落到同一水平面,a下落中有水平匀强电场,b下落中有水平向里的匀强磁场,三油滴落地时间设为ta、tb、tc,落地时速度分别va、vb、vc,则( )
A.ta=tb=tc,va=vb=vc | B.ta=tb=tc,va>vb=vc |
C.tb>ta=tc,va=vb=vc | D.tb>ta=tc,va>vc=vb |
带电粒子的质量 m=1.7×10-27kg,电荷量 q=1.6×10-19C,以速度 v =3.2×106m/s 沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B=0.17 T,磁场的宽度L=10 cm,如图所示。不计重力,求:
(1)带电粒子离开磁场时的偏转角θ多大?
(2)带电粒子在磁场中运动多长时间?
如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场,一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进人磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a,则该粒子的比荷和所带电荷的正负是( )
A.,正电荷 | B.,正电荷 | C.,负电荷 | D.,负电荷 |
如图,纸面内有E、F、G三点,∠GEF=30°,∠EFG=135°.空间有一匀强磁场,磁感应强度大小为B,方向垂直于纸面向外.先使带有电荷量为q(q>0)的点电荷a在纸面内垂直于EF从F点射出,其轨迹经过G点;再使带有同样电荷量的点电荷b在纸面内与EF成一定角度从E点射出,其轨迹也经过G点.两点电荷从射出到经过G点所用的时间相同,且经过G点时的速度方向也相同.已知点电荷a的质量为m,轨道半径为R,不计重力.求:
(1)点电荷a从射出到经过G点所用的时间;
(2)点电荷b的速度大小.
试题篮
()