如图所示,在xoy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向里的匀强磁场。现有一质量为m、电量为+q的粒子(重力不计)从坐标原点O以速度大小为v0射入磁场,其入射方向与x轴的正方向成30°角。当粒子第一次进入电场后,运动到电场中P点处时,方向与x轴正方向相同,P点坐标为〔()L,L〕。(sin37°=0.6,cos37°=0.8)求:
(1)粒子运动到P点时速度的大小为v;
(2)匀强电场的电场强度E和匀强磁场的磁感应强度B;
(3)粒子从O点运动到P点所用的时间t。
中心均开有小孔的金属板C、D与边长为d的正方形单匝金属线圈连接,正方形框内有垂直纸面的匀强磁场,大小随时间变化的关系为B=kt(k未知且k>0),E、F为磁场边界,且与C、D板平行。D板正下方分布磁场大小均为B0,方向如图所示的匀强磁场。区域Ⅰ的磁场宽度为d,区域Ⅱ的磁场宽度足够大。在C板小孔附近有质量为m、电量为q的正离子由静止开始加速后,经D板小孔垂直进入磁场区域Ⅰ,不计离子重力。
(1)如果粒子只是在Ⅰ区内运动而没有到达Ⅱ区,那么粒子的速度v满足什么条件?
(2)若改变正方形框内的磁感强度变化率k,离子可从距D板小孔为2d的点穿过E边界离开磁场,求正方形框内磁感强度的变化率k是多少?
空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界。一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O点入射。这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子。不计重力。下列说法正确的是
A.入射速度不同的粒子在磁场中的运动时间一定不同 |
B.入射速度相同的粒子在磁场中的运动轨迹一定相同 |
C.在磁场中运动时间相同的粒子,其运动轨迹一定相同 |
D.在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越大 |
(l0分)磁聚焦被广泛的应用在电真空器件中,如图所示,在坐标中存在有界的匀强聚焦磁场,方向垂直坐标平面向外,磁场边界PQ直线与x轴平行,距x轴的距离为,边界POQ的曲线方程为。且方程对称y轴,在坐标x轴上A处有一粒子源,向着不同方向射出大量质量均为m、电量均为q的带正电粒子,所有粒子的初速度大小相同均为v,粒子通过有界的匀强磁场后都会聚焦在x轴上的F点.已知A点坐标为(-a,0),F点坐标为(a,0).不计粒子所受重力和相互作用求:
(1)匀强磁场的磁感应强度;
(2)粒子射入磁场时的速度方向与x轴的夹角为多大时,粒子在磁场中运动时间最长,最长对间为多少?
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º。一质量为m的带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。
如图所示,粒子源O产生初速度为零、电荷量为q、质量为m的正离子,被电压为的加速电场加速后通过直管,在到两极板等距离处垂直射入平行板间的偏转电场,两平行板间电压为2。离子偏转后通过极板MN上的小孔S离开电场。已知ABC是一个外边界为等腰三角形的匀强磁场区域,磁场方向垂直纸面向外,边界AB=AC=L,,离子经过一段匀速直线运动,垂直AB边从AB中点进入磁场。(忽略离子所受重力)
(1)若磁场的磁感应强度大小为,试求离子在磁场中做圆周运动的半径;
(2)若离子能从AC边穿出,试求磁场的磁感应强度大小的范围。
在边长为a的等边三角形ABC区域内有一匀强磁场,磁感应强度为B,方向垂直纸面向里,一带正电的粒子质量为m,电量为q,由BC边中点O沿平行于AB的方向射入磁场,速度大小为v0,忽略粒子的重力.
(1)若粒子刚好垂直AB边飞出磁场,求粒子在磁场中的运动时间;
(2)如果要求粒子在磁场中的飞行时间最长,求粒子的速度必须满足的条件。
如图(a)所示,在以直角坐标系xOy的坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直xOy所在平面的匀强磁场。一带电粒子由磁场边界与x轴的交点A处,以速度v0沿x轴负方向射入磁场,粒子恰好能从磁场边界与y轴的交点C处,沿y轴正方向飞出磁场,不计带电粒子所受重力。
(1)求粒子的荷质比。(要求画出粒子在磁场中运动轨迹的示意图)
(2)若磁场的方向和所在空间的范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,粒子飞出磁场时速度的方向相对于入射方向改变了θ角,如图(b)所示,求磁感应强度B′的大小。(要求画出粒子在磁场中运动轨迹的示意图)
图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面向里,图中右边有一半径为R、圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出.已知弧所对应的圆心角为θ.不计重力.求
(1)离子速度的大小;
(2)离子的质量.
如图所示,半径为r的半圆形区域内分布着垂直纸面向里的匀强磁场,磁感应强度为B.半圆的左边分别有两平行金属网M和金属板 N,M、 N两板所接电压为U,板间距离为d.现有一群质量为m、电荷量为q的带电粒子(不计重力)由静止开始从金属板 N上各处开始加速,最后均穿过磁场右边线PQ.求这些粒子到达磁场右边线PQ的最长时间和最短时间差.
如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外.两区域切点为C.今有质量m=3.2×10-26 kg.带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直磁场射入,它将穿越C点后再从右侧区穿出.求:
(1)该离子通过两磁场区域所用的时间.
(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)
如图所示,有一半径为R1=1m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面,一带正电粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应,求:
(1)若加速电压U1=1.25×102V,则粒子刚进入环形磁场时的速度多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
如右图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°。一质量为m,带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中的磁感应强度的大小。(忽略粒子重力)。
如图所示,在半径为a的圆形区域内充满磁感应强度大小为的均匀磁场,其方向垂直于纸面向里.在圆形区域平面内固定放置一绝缘材料制成的边长为L=1.2a的刚性等边三角形框架,其中心位于圆形区域的圆心.边上点(DS=L/2)处有一发射带电粒子源,发射粒子的方向皆在图示平面内且垂直于边,发射粒子的电量皆为(>0),质量皆为,但速度有各种不同的数值.若这些粒子与三角形框架的碰撞均无机械能损失,并要求每一次碰撞时速度方向垂直于被碰的边.试问:(1)若发射的粒子速度垂直于边向上,这些粒子中回到点所用的最短时间是多少?(2)若发射的粒子速度垂直于边向下,带电粒子速度的大小取哪些数值时可使点发出的粒子最终又回到点?这些粒子中,回到点所用的最短时间是多少?(不计粒子的重力和粒子间的相互作用)
如图所示,带电平行金属板PQ和MN之间的距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。区域I的左边界在y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。
(1)求两金属板之间电势差U;
(2)求电子从区域II右边界射出时,射出点的纵坐标y;
(3)撤除区域I中的磁场而在其中加上沿x轴正向的匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。
试题篮
()