如图所示,A、B是竖直放置的平行板电容器,B板中央有一个小孔,恰好跟一个边界是等边三角形的一个匀强磁场的顶端相接,磁场方向垂直纸面向里,磁感应强度为B,其中,磁场的边界平行于平行板A和B。
若在A板上正对B板小孔的P处,静止释放一个带电量为、质量为的带电粒子(重力不计),恰能从图中O点射出,且,则A、B两板间的电压是多少?
若要上述带电粒子在磁场中的运动时间与平行板A、B间的电压无关,则A、B两板间的电压又是多少?
如图甲所示的坐标系中,第四限象内存在垂直于纸面向里的有界匀强磁场,方向的宽度OA=20cm,方向无限制,磁感应强度B0=1×10-4T。现有一比荷为q/m=2×1011C/kg的正离子以某一速度从O点射入磁场,α=60°,离子通过磁场后刚好从A点射出。
求离子进入磁场B0的速度的大小;
离子进入磁场B0后,某时刻再加一个同方向的匀强磁场,使离子做完整的圆周运动,求所加磁场磁感应强度的最小值;
离子进入磁场B0后,再加一个如图乙所示的变化磁场(正方向与B0方向相同,不考虑磁场变化所产生的电场),求离子从O点到A点的总时间。
电子(e,m)以速度v0与x轴成30°角垂直射入磁感强度为B的匀强磁场中,经一段时间后,打在x轴上的P点,如图所示,求:
P点到O点的距离?
电子由O点运动到P点所用的时间?
如图所示,半径为r=0.10m的圆形匀强磁场区域边界跟轴相切于坐标原点O,磁感应强度按图示规律变化,方向垂直直纸面向里,在t=0时刻由O处沿y轴正方向射入速度为的带负电粒子,已知粒子质量,不计粒子重力,求粒子在磁场中的运动时间和离开磁场时的位置坐标。
核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。如图所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。设环状磁场的内半径为R1=0.5m,外半径R2=1.0m,磁场的磁感强度B=1.0T,若被束缚带电粒子的荷质比为q/m=4×107C/㎏,中空区域内带电粒子具有各个方向的速度。
求:(1)粒子沿环状的半径方向射入磁场,不能穿越磁场的最大速度。
(2)所有粒子不能穿越磁场的最大速度。
一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v ,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。求匀强磁场的磁感应强度B和射出点的坐标。
如图所示,在轴上方有磁感应强度为B的匀强磁场,一个质量为、带电量为的负电荷以速度,从坐标原点O处垂直于轴射入磁场.不计粒子重力,求:粒子在磁场中飞行的时间和飞出磁场点的坐标.
如图,在区域I(0≤x≤d)和区域II(d≤x≤2d)内分别存在匀强磁场,磁感应强度大小分别为B和2B,方向相反,且都垂直于Oxy平面。一质量为m、带电荷量q(q>0)的粒子a于某时刻从y轴上的P点射入区域I,其速度方向沿x轴正方向。已知a在离开区域I时,速度方向与x轴正方向的夹角为30°,此时,另一完全相同的粒子b也从P点以相同的速度沿x轴正方向射入区域I,不计重力和两粒子之间的相互作用力。求:
(1)粒子a射入区域I时速度的大小;
(2)当a离开区域II时,a、b两粒子的y坐标之差。
如图所示,空间分布着方向平行于纸面且与场区边界垂直的有界匀强电场,电场强度为E、宽度为L。在紧靠电场右侧的圆形区域内,分布着垂直于纸面向外的匀强磁场,圆形磁场区域半径为r。当一带正电的粒子(质量为m,电荷量为q)从A点静止释放后,在M点离开电场,并沿半径方向射入磁场区域,磁感应强度为B,粒子恰好从N点射出,O为圆心,∠MON=120°,粒子重力忽略不计。求:
(1)粒子经电场加速后,进入磁场时速度v的大小;
(2)匀强磁场的磁感应强度B的大小和粒子在电场、磁场中运动的总时间t;
(3)若粒子在离开磁场前某时刻,磁感应强度方向不变,大小突然变为B1,此后粒子恰好被束缚在该磁场中,则B1的最小值为多少?
图中左边有一对平行金属板,两板相距为d,电压为u,两板之间有匀强磁场,磁场应强度大小为B0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a的正三角形区域EFG(EF边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B,方向垂直于纸面朝里。假设一系列电荷量为q的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF边中点H射入磁场区域。不计重力
(1)已知这些离子中的离子甲到达磁场边界EG后,从边界EF穿出磁场,求离子甲的质量。
(2)已知这些离子中的离子乙从EG边上的I点(图中未画出)穿出磁场,且GI长为,求离子乙的质量。
(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。
如图所示的正方形平面oabc内,存在着垂直于该平面向外的匀强磁场,磁感应强度大小为B,已知正方形边长为L,一质量为m,带电量为+q的粒子(不计重力)在t=0时刻平行于oc边从0点射入磁场中,
(1)若带电粒子从a点射出磁场,求带电粒子在磁场中运动的时间以及初速度的大小;
(2)若磁场的磁感应强度按如图所示的规律变化,规定磁场向外的方向为正方向,磁感应强度的大小为Bo,则要使带电粒子能从oa边界射出磁场,磁感应强度B的变化周期T的最小值应为多少?
(3)若所加磁场与第(2)问中相同,则要使粒子从b点沿ab方向射出磁场,满足这一条件的磁感应强度的变化周期T及粒子射入磁场时的速度Vo应为多少?(不考虑磁场变化产生的电场 )
我国科学家在对放射性元素的研究中,进行了如下实验:如图所示,以MN为界,左、右两边分别是磁感应强度为2B0和B0的匀强磁场,且磁场区域足够大。在距离界线为l处平行于MN固定一个光滑的瓷管PQ,开始时一个放射性元素的原子核处在管口P处,某时刻该原子核沿平行于界线的方向放出一个质量为m、带电量为-e的电子,发现电子在分界线处以方向与界线成60°角的速度进入右边磁场(如图所示),反冲核在管内匀速直线运动,当到达管另一端Q点时,刚好又俘获了这个电子而静止。求:
(1)电子在两磁场中运动的轨道半径大小(仅用l表示)和电子的速度大小;
(2)反冲核的质量。
如图所示,虚线所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成θ角。设电子质量为m,电荷量为e,不计电子之间的相互作用力及所受的重力。求:
(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;
(3)圆形磁场区域的半径r。
如图所示的坐标平面内,在y轴的左侧存在垂直纸面向外、磁感应强度大小B1=0.20T的匀强磁场,在y轴的右侧存在垂直纸面向里、宽度d=0.125m的匀强磁场B2.某时刻一质量m=2.0×10-8kg、电量q=+4.0×10-4C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25m,0)的P点以速度v=2.0×103 m/s沿y轴正方向运动.试求:
(1)微粒在y轴的左侧磁场中运动的轨道半径;
(2)微粒第一次经过y轴时速度方向与y轴正方向的夹角;
(3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件
试题篮
()