电子质量为m、电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:
(1) OP的长度;
(2)电子从由O点射入到落在P点所需的时间t.
如图所示,Ⅰ、Ⅱ、Ⅲ为电场和磁场的理想边界,一束电子(电量为e,质量为m,重力不计)由静止状态从P点经过Ⅰ、Ⅱ间的电场加速后垂直到达边界Ⅱ的Q点。匀强磁场的磁感应强度为B,磁场边界宽度为d,电子从磁场边界Ⅲ穿出时的速度方向与电子原来的入射方向夹角为30°。求:
(1)电子在磁场中运动的时间t;
(2)若改变PQ间的电势差,使电子刚好不能从边界Ⅲ射出,则此时PQ间的电势差U是多少?
在直径为d的圆形区域内存在均匀磁场、磁场方向垂直于圆面指向纸外。一电量为q、质量的m的粒子,从磁场区域的一条直径AC上的A点射入磁场,其速度大小为v0,方向与AC成α角。若此粒子恰好能打在磁场区域圆周上的D点,AD与AC的夹角为β,如图所示,求该匀强磁场的磁感应强度B的大小。
如图所示,在倾角为30°的斜面OA左侧有一竖直档板,档板与斜面OA间有垂直纸面向外的匀强磁场,磁感应强度为B=0.2T,档板上有一小孔P,OP=0.6m,现有一质量m=4×10-20kg,带电量q=+2×10-14C的粒子,从小孔以速度v0=3×104m/s水平射进磁场区域.粒子重力不计.
(1)粒子在磁场中做圆周运动的半径是多少?
(2)通过调整粒子进入磁场的速度大小可以控制粒子打到斜面OA时的速度方向,现若要粒子垂直打到斜面OA上,则粒子进入磁场的速度该调整为多少?此情况下粒子打到斜面OA的时间又为多少?
如图所示,平行金属板长L,间距L,两板间存在向下的匀强电场E,一带电粒子(不计重力)沿两板中线以速度V0垂直射入电场,恰好从下板边缘P点射出平行金属板。若将匀强电场换成垂直纸面的匀强磁场,粒子仍然从同一点以同样的速度射入两板间,要粒子同样从P点射出,求
(1)所加匀强磁场的方向;
(2)所加匀强磁场的磁感应强度的大小B。
(12分)一匀强磁场分布在以O为圆心,半径为R的圆形区域内,方向与纸面垂直,如图所示,质量为m、电荷量q的带正电的质点,经电场加速后,以速度v沿半径MO方向进入磁场,沿圆弧运动到N点,然后离开磁场,∠MON=120º,质点所受重力不计,求:
(1)判断磁场的方向;
(2)该匀强磁场的磁感应强度B;
(3)带电质点在磁场中运动的时间。
如图,宽度为d的有界匀强磁场,磁感应强度为B。MM/和NN/是它的两条边界。现有质量为m,电量为e的电子沿图示方向垂直磁场射入,要使粒子不从边界NN’射出,电子入射速率的最大值是多少?
如图所示,在平面直角坐标系xoy中,第一象限内有一边长为L的等边三角形区域(其AO边与y轴重合、一个顶点位于坐标原点O),区域内分布着垂直纸面的匀强磁场;第二象限内分布着方向竖直向下的匀强电场。现有质量为m、电荷量为q的带正电的粒子(不计重力),以速度v垂直OC边从三角形OC边中点垂直射入磁场,并垂直y轴进入电场,最后从x轴上的某点离开电场,已知粒子飞出电场时,其速度方向OC边平行。求:
(1)粒子在磁场中运动的时间;
(2)匀强电场的场强大小。
如图所示,在半径为的圆形区域内有水平向里的匀强磁场,磁感应强度B,圆形区域右侧有一竖直感光板,从圆弧顶点P以速率的带正电粒子平行于纸面进入磁场,已知粒子的质量为m,电量为q,粒子重力不计。
⑴若粒子对准圆心射入,求它在磁场中运动的时间;
⑵若粒子对准圆心射入,且速率为,求它打到感光板上时速度的垂直分量;
⑶若粒子以速度从P点以任意角入射,试证明它离开磁场后均垂直打在感光板上。
如图所示,左侧匀强电场的区域宽度为L,电场强度为E,右侧匀强磁场的左右宽度为d ,磁场的上下区域很长,一质量为m、带电量为q的粒子,从电场的左边界A点静止释放,经电场加速后垂直进入磁场,出磁场时与入射方向的偏角为θ.(不计粒子重力)
求:
(1)粒子离开电场时的速度;
(2)匀强磁场的磁感应强度;
(3)粒子在磁场中的运动时间.
如图所示,一束电子(电量为e)以速度v垂直射入磁感强度为B,宽度为d的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是多少?穿透磁场的时间是多少?
如图所示,一束电子(电量为e)以速度V0垂直射入磁感应强度为B,宽为d的匀强磁场中,电子穿出磁场的速度方向与电子原来的入射方向的夹角为30°,(电子重力忽略不计)
求:(1)电子的质量是多少?
(2)穿过磁场的时间是多少?
(3)若改变初速度大小,使电子刚好不能从A边射出,则此时速度v是多少?
在直径为d的圆形区域内存在着均匀磁场,磁感应强度为B,磁场方向垂直于圆面指向纸外.一电荷量为q、质量为m的带正电粒子,从磁场区域的一条直径AC上的A点沿纸面射入磁场,其速度方向与AC成角,如图所示.若此粒子在磁场区域运动过程,速度的方向一共改变了90º.重力可忽略不计,求:
(1)该粒子在磁场区域内运动所用的时间t.
(2)该粒子射入时的速度大小v.
如图所示,虚线所围圆形区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B.一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成角.设电子质量为m,电荷量为e,不计电子之间的相互作用力及所受的重力.求:
(1)电子在磁场中运动的时间t
(2)圆形磁场区域的半径r.
试题篮
()