从粒子源不断发射相同的带电粒子,初速度可忽略不计,这些粒子经电场加速后,从M孔以平行于MN方向进入一个边长为d的正方形的磁场区域MNQP,如图7所示,磁感应强度大小为B,方向垂直纸面向外,其中PQ的中点S开有小孔,外侧紧贴PQ放置一块荧光屏。当把加速电压调节为U时,这些粒子刚好经过孔S打在荧光屏上,不计粒子的重力和粒子间的相互作用。
(1)请说明粒子的电性
(2)求出粒子的比荷。
如图所示,一个质量为m,电荷量+q的带电微粒(重力忽略不计),从静止开始经U1电压加速后,水平进入两平行金属板间的偏转电场中,金属板长L,两板间距d,微粒射出偏转电场时的偏转角θ=30°,又接着进入一个方向垂直于纸面向里的匀强磁场区,求:
(1)微粒进入偏转电场时的速度v0是多大?
(2)两金属板间的电压U2是多大?
(3)若该匀强磁场的磁感应强度B,微粒在磁场中运动后能从左边界射出,则微粒在磁场中的运动时间为多少?
(4)若该匀强磁场的宽度为D,为使微粒不会从磁场右边射出,该匀强磁场的磁感应强度B至少多大?
如图,直线MN 上方有平行于纸面且与MN成450的有界匀强电场,电场强度大小未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B。今从MN上的O点向磁场中射入一个速度大小为v、方向与MN成450角的带正电粒子,该粒子在磁场中运动时的轨道半径为R。若该粒子从O点出发记为第一次经过直线MN,而第五次经过直线MN时恰好又通过O点。不计粒子的重力。求:
(1)电场强度的大小;
(2)该粒子再次从O点进入磁场后,运动轨道的半径;
(3)该粒子从O点出发到再次回到O点所需的时间。
如图所示,真空中有方向垂直纸面向里的匀强磁场和方向沿x轴正方向的匀强电场,当质量为m的带电粒子以速度v沿y轴正方向射入该区域时,恰好能沿y轴做匀速直线运动;若撤去磁场只保留电场,粒子以相同的速度从O点射入,经过一段时间后通过坐标为(L,2L)的b点;若撤去电场,只保留磁场,并在直角坐标系xOy的原点O处放置一粒子源,它能向各个方向发射质量均为m、速度均为v的带电粒子,不计粒子的重力和粒子之间的相互作用力。求:
(1)只保留电场时,粒子从O点运动到b点,电场力所做的功W;
(2)只保留磁场时,粒子源发射的粒子从O点第一次运动到坐标为(0,2L)的a点所用的时间t。
如图所示,在xoy平面第一象限里有竖直向下的匀强电场,电场强度为E。第二象限里有垂直于纸面向外的匀强磁场,磁感应强度为B。在x轴上-a处,质量为m、电荷量为e的质子以大小不同的速度射入磁场,射入时速度与x轴负方向夹角为。不计空气阻力,重力加速度为g。求:
(1)在-x轴上有质子到达的坐标范围;
(2)垂直于y轴进入电场的质子,在电场中运动的时间;
(3)在磁场中经过圆心角为2的一段圆弧后进入电场的质子,到达x轴的动能。
如图,静止于A处的正离子,经电压为U的加速电场加速后沿图中圆弧虚线通过静电分析器,从P点垂直CN进入矩形区域的有界匀强电场,电场方向水平向左。静电分析器通道内有均匀辐向分布的电场,已知圆弧所在处场强为E0,方向如图所示;离子质量为m、电荷量为q;、,离子重力不计。
(1)求圆弧虚线对应的半径R的大小;
(2)若离子恰好能打在NQ的中点上,求矩形区域QNCD内匀强电场场强E的值;
(3)若撤去矩形区域QNCD的匀强电场,换为垂直纸面向里的磁场,要求离子能最终打在QN上,求磁场磁感应强度B的取值范围
如下图所示,在xoy坐标系的原点O处有一点状的放射源,它向xoy平面内的x轴上方各个方向发射α粒子,α粒子的速度大小均为v0,在0<y<d的区域内分布有指向y轴正向的匀强电场,场强大小,其中q、m分别为α粒子的电量和质量;在d<y<2d的区域内分布有垂直于xoy平面向里的匀强磁场,MN为电场和磁场的边界.AB为一块很大的平面感光板垂直于xoy平面且平行于x轴,放置于y=2d处.观察发现此时恰好无粒子打到AB板上.(q、d、m、v0均为已知量,不考虑α粒子的重力及粒子间的相互作用).求:
(1)α粒子通过电场和磁场边界MN时的速度大小及此时距y轴的最大距离.
(2)磁感应强度B的大小.
(3)将AB板至少向下平移多少距离,才能使所有粒子均能打到AB板上?此时AB板上被α粒子打中的区域长度是多少?
如图所示,竖直放置的平行金属板A、B中间开有小孔,小孔的连线沿水平放置的平行金属板C、D的中轴线,某时刻粒子源P发出一质量为m、电荷量为q的带正电的粒子(初速度不计),粒子在A、B间被加速后,进入金属板C、D之间.A、B间的电压UAB =Uo,C、D间的电压UCD=2Uo/3,金属板C、D长度为L,间距d=L/3.在金属板C、D右侧有一个环形带磁场,其圆心与金属板C、D的中心O点重合,内圆半径R1=L/3,磁感应强度的大小B0 =,磁感应强度的方向垂直于纸面向内,磁场内圆边界紧靠金属板C、D右端,粒子只在纸面内的运动,粒子的重力不计.
(1)求粒子离开偏转电场时在竖直方向上偏移的距离;
(2)若粒子不能从环形带磁场的右侧穿出,求环形带磁场的最小宽度.
(3)在环形带磁场最小宽度时,求粒子在磁场中运动的时间
如图所示,竖直平面内的光滑倾斜轨道AB、水平轨道CD与半径r=0.5m的光滑圆弧轨道分别相切于B、C点,AB与水平面的夹角为37°,过B点垂直于纸面的竖直平面左侧有匀强磁场,磁感应强度B=1T、方向垂直于纸面向里;过C点垂直于纸面的竖直平面右侧有电场强度E=1×104N/C、方向水平向右的匀强电场(图中未画出)。现将小物块P从倾斜轨道上A点由静止释放沿AB向下运动,运动过程中电荷量保持不变,不计空气阻力。已知物块P的质量m=0.5kg、电荷量q=+2.5×10-4C,P与水平轨道间的动摩擦因数为0.2,A、B两点间距离x=1m,取g=10m/s2,sin37°=0.6,cos37°=0.8。求:
⑴P下滑到B点的速度;
⑵P运动到C点时对圆轨道的压力;
⑶P与水平面间因摩擦而产生的热量。
如图甲,真空中竖直放置两块相距为d的平行金属板P、Q,两板间加上如图乙最大值为U0的周期性变化的电压,在Q板右侧某个区域内存在磁感应强度大小为B、方向垂直于纸面向里的有界匀强磁场.在紧靠P板处有一粒子源A,自t=0开始连续释放初速不计的粒子,经一段时间从Q板小孔O射入磁场,然后射出磁场,射出时所有粒子的速度方向均竖直向上.已知电场变化周期T=,粒子质量为m,电荷量为+q,不计粒子重力及相互间的作用力。求:
(1)t=0时刻释放的粒子在P、Q间运动的时间;
(2)粒子射入磁场时的最大速率和最小速率;
(3)有界磁场区域的最小面积。
在如图所示的同心圆环形区域内有垂直于圆环面的匀强磁场,磁场的方向如图,两同心圆的半径分别为R0、2R0。将一个质量为m(不计重力),电荷量为+q的粒子通过一个电压为U的电场加速后从P点沿内圆的切线进入环形磁场区域。欲使粒子始终在磁场中运动,求匀强磁场的磁感应强度大小的范围。
如图所示,条形区域Ⅰ和Ⅱ内分别存在方向垂直于纸面向外和向里的匀强磁场,磁感应强度B的大小均为0.3T,AA′、BB′、CC′、DD′为磁场边界,它们相互平行,条形区域的长度足够长,磁场宽度及BB′、CC′之间的距离d=1m。一束带正电的某种粒子从AA′上的O点以沿与AA′成60°角、大小不同的速度射入磁场,当粒子的速度小于某一值v0时,粒子在区域Ⅰ内的运动时间均为t0=4×10-6s;当粒子速度为v1时,刚好垂直边界BB′射出区域Ⅰ。取π≈3,不计粒子所受重力。 求:
(1)粒子的比荷q/m;
(2)速度v0和v1的大小;
(3)速度为v1的粒子从O到DD′所用的时间。
在直角坐标系xoy中,有一半径为R的圆形磁场区域,磁感强度为B,磁场方向垂直于xoy平面指向纸面外,该区域的圆心坐标为(0,R),P1 P2分别为加速电场的正负两极板,P2中央有一小孔,两极板平行于都x轴正对放置,如图所示。有一个质量为m电量为q的负离子,由静止经电场加速后从点(,0)沿y轴正向射入第I象限,不计重力的影响。
(1)若离子从射入到射出磁场通过了该磁场的最大距离,试求离子在磁场区域经历的时间t1和加速电场的加速电压U1
(2)若离子在磁场区域经历的时间,求加速电场的加速电压U2.
如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°.一质量为m、带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t,求:
(1)画出粒子在磁场Ⅰ和Ⅱ中的运动轨迹;
(2)粒子在磁场Ⅰ和Ⅱ中的轨道半径R1和R2比值;
(3)Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力).
如图(甲)所示,某粒子源向外放射出一个α粒子,粒子速度方向与水平成30°角,质量为m,电荷量为+q。现让其从粒子源射出后沿半径方向射入一个磁感应强度为B、区域为圆形的匀强磁场(区域Ⅰ)。经该磁场偏转后,它恰好能够沿y轴进入下方的平行板电容器,并运动至N板且恰好不会从N板的小孔P射出电容器。已知平行板电容器与一边长为L的正方形单匝导线框相连,其内有垂直框面的磁场(区域Ⅱ),磁场变化如图(乙)所示。不计粒子重力,求:
(1)磁场区域Ⅱ磁场的方向及α粒子射出粒子源的速度大小;
(2)圆形磁场区域的半径;
(3)α粒子在磁场中运动的总时间。
试题篮
()