如图所示,第四象限内有互相正交的电场强度为E的匀强电场与磁感应强度为B1=0.25T的匀强磁场,第一象限的某个矩形区域内,有方向垂直纸面向里、磁感应强度为B2的匀强磁场,磁场的下边界与x轴重合,质量为m=、带电荷量的微粒以速度从y轴上的M点开始沿与y轴正方向成60o角的直线匀速运动,从P点进入处于第一象限内的匀强磁场区域,一段时间后,微粒经过y轴上的N点并与y轴正方向成60o角的方向进入第二象限,M点的坐标为(0,-10cm),N点的坐标为(0,30cm),不计粒子的重力,g取10m/s2,求:
(1)第四象限内匀强电场的电场强度E;
(2)第一象限内匀强磁场的磁感应强度B的大小;
(3)第一象限内矩形匀强磁场区域的最小面积Smin。
如图所示,K与虚线MN之间是加速电场,虚线MN与PQ之间是匀强电场,虚线PQ与荧光屏之间是匀强磁场,且MN、PQ与荧光屏三者互相平行,电场和磁场的方向如图所示,图中A点与O点的连线垂直于荧光屏.一带正电的粒子从A点离开加速电场,速度方向垂直于偏转电场方向射入偏转电场,在离开偏转电场后进入匀强磁场,最后恰好垂直地打在荧光屏上.已知电场和磁场区域在竖直方向足够长,加速电场电压与偏转电场的场强关系为U=Ed,式中的d是偏转电场的宽度,磁场的磁感应强度B与偏转电场的电场强度E和带电粒子离开加速电场的速度v0关系符合表达式v0=.若题中只有偏转电场的宽度d为已知量。
(1)画出带电粒子轨迹示意图。
(2)磁场的宽度L为多少?
(3)带电粒子在电场和磁场中垂直于v0方 向的偏转距离分别是多少?
如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴方向的匀强电场,其电场强度大小和方向随时间变化的关系如图乙所示,现有质量为m,带电量为e的电子(不计重力)不断的从原点O以速度v0沿x轴正方向射入电场,问
(1)若要电子飞出电场时速度方向仍然沿x轴方向,则电场变化的周期必须满足何条件?
(2)若要电子从图中的A点沿x轴飞出,则电子应该在什么时刻进入电场?
(3)若在电场右侧有一个以点(3L,0)为圆心,半径为L的圆形磁场区域,且满足,则所有能进入磁场的电子将从何处飞出磁场?
如图所示,有一半径为r的圆形有界匀强磁场区域,磁感应强度为B,方向垂直纸面向里,其周围对称放置带有中心孔a、b、c的三个相同的平行板电容器,三个电容器两板间距离均为d,接有相同的电压U,在D处有一静止的电子,质量为m,电荷量为e,释放后从a孔射入匀强磁场中,并先后穿过b、c孔再从a孔穿出回到D处,求:
(1)电子在匀强磁场中运动的轨道半径R;
(2)匀强磁场的磁感应强度B;
(3)电子从D出发到第一次回到D处所用的时间t。
如图甲所示,在光滑绝缘水平桌面内建立xOy坐标系,在第Ⅱ象限内有平行于桌面的匀强电场,场强方向与x轴负方向的夹角θ=45°。在第Ⅲ象限垂直于桌面放置两块相互平行的平板C1、C2,两板间距为d1=0.6m,板间有竖直向上的匀强磁场,两板右端在y轴上,板C1与x轴重合,在其左端紧贴桌面有一小孔M,小孔M离坐标原点O的距离为l1=0.72m。在第Ⅳ象限垂直于x 轴放置一竖直平板C3,垂足为Q,Q、O相距d2=0.18m,板C3长l2=0.6m。现将一带负电的小球从桌面上的P点以初速度垂直于电场方向射出,刚好垂直于x轴穿过C1板上的M孔,进入磁场区域。已知小球可视为质点,小球的比荷,P点与小孔M在垂直于电场方向上的距离为,不考虑空气阻力。求:
(1)匀强电场的场强大小;
(2)要使带电小球无碰撞地穿出磁场并打到平板C3上,求磁感应强度B的取值范围;
(3)以小球从M点进入磁场开始计时,磁场的磁感应强度随时间呈周期性变化,如图乙所示,则小球能否打在平板C3上?若能,求出所打位置到Q点距离;若不能,求出其轨迹与平板C3间的最短距离。(,计算结果保留两位小数)
如图所示的坐标平面内,y轴左侧存在方向垂直纸面向外、磁感应强度大小B1=0.20 T的匀强磁场,在y轴的右侧存在方向垂直纸面向里,宽度d=12.5 cm的匀强磁场B2,某时刻一质量m=2.0×10-8 kg、电荷量q=+4.0×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v0=2.0×103 m/s沿y轴正方向运动.试求:
(1)微粒在y轴左侧磁场中运动的轨道半径;
(2)微粒第一次经过y轴时,速度方向与y轴正方向的夹角;
(3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件.
在如图所示的平面直角坐标系中存在一个半径R=0.2 m的圆形匀强磁场区域,磁感应强度B=1.0 T,方向垂直纸面向外,该磁场区域的右边缘与坐标原点O相切.y轴右侧存在电场强度大小为E=1.0×104 N/C的匀强电场,方向沿y轴正方向,电场区域宽度L=0.1 m.现从坐标为(-0.2 m,-0.2 m)的P点发射出质量m=2.0×10-9 kg、带电荷量q=5.0×10-5C的带正电粒子,沿y轴正方向射入匀强磁场,速度大小v0=5.0×103 m/s.重力不计.
(1)求该带电粒子射出电场时的位置坐标;
(2)为了使该带电粒子能从坐标为(0.1 m,-0.05 m)的点回到电场,可在紧邻电场的右侧一正方形区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和正方形区域的最小面积.
在如图所示的竖直平面内,水平轨道CD和长度的倾斜轨道GH与半径的光滑圆弧轨道分别相切于D点和G点,GH与水平面的夹角,过G点、垂直于纸面的竖直平面左侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度;过D点、垂直于纸面的竖直平面右侧有匀强电场,电场方向水平向右,电场强度。小物体质量、电荷量,受到水平向右的推力的作用,沿CD向右做匀速直线运动,到达D点后撤去推力。与轨道CD、GH间的动摩擦因数均为,取,,物体电荷量保持不变,不计空气阻力。求:
(1)小物体到达G点时的速度v的大小;
(2)小物体从G点运动到斜面顶端H点所用的时间.
真空中有如图所示矩形区域,该区域总高度为2h、总宽度为4h,其中上半部分有磁感应强度为B、垂直纸面向里的水平匀强磁场,下半部分有竖直向下的匀强电场,x轴恰为水平分界线,正中心恰为坐标原点O.在x=2.5h处有一与x轴垂直的足够大的光屏(图中未画出).质量为m、电荷量为q的带负电粒子源源不断地从下边界中点P由静止开始经过匀强电场加速,通过坐标原点后射入匀强磁场中.粒子间的相互作用和粒子重力均不计.
(1)若粒子在磁场中恰好不从上边界射出,求加速电场的场强E;
(2)若加速电场的场强E为(1)中所求E的4倍,求粒子离开磁场区域处的坐标值;
(3)若将光屏向x轴正方向平移,粒子打在屏上的位置始终不改变,则加速电场的场强E′多大?粒子在电场和磁场中运动的总时间多大?
如图所示,一个圆形有界匀强磁场半径为,磁场方向垂直纸面向外,一个质量为,带电量为的带正电的粒子(重力不计)由点沿水平方向以速度正对圆心射入有界磁场区域,从点射出时速度方向偏转了。求:
(1)该磁场的磁感应强度?
(2)若要把该磁场去掉,换成竖直向下的匀强电场,要求该粒子依然从点射出,请计算计算电场强度与磁感应强度的比值?
如图所示,在平面直角坐标系xoy的第四象限有垂直纸面向里的匀强磁场,一质量为m=5.0×10﹣8kg、电量为q=1.0×10﹣6C的带电粒子,从静止开始经U0=10V的电压加速后,从P点沿图示方向进入磁场,已知OP=30cm,(粒子重力不计,sin37°=0.6,cos37°=0.8),求:
(1)带电粒子到达P点时速度v的大小
(2)若磁感应强度B=2.0T,粒子从x轴上的Q点离开磁场,求QO的距离
(3)若粒子不能进入x轴上方,求磁感应强度B'满足的条件.
如图所示,A点距坐标原点的距离为l,坐标平面内有边界过A点和坐标原点O的圆形匀强磁场区域,磁场方向于垂直坐标平面向里。有一电子(质量为m、电荷量为e)从A点以初速度v0平行x轴正方向射入磁场区域,在磁场中运行,从x轴上的B 点射出磁场区域,此时速度方向与x轴的正方向之间的夹角为60°,求:
⑴磁场的磁感应强度大小;
⑵磁场区域的圆心O1的坐标;
⑶电子在磁场中运动的时间。
“太空粒子探测器”是由加速、偏转和收集三部分组成,其原理可简化如下:如图1所示,辐射状的加速电场区域边界为两个同心平行半圆弧面,圆心为O,外圆弧面AB的半径为L,电势为φ1,内圆弧面CD的半径为,电势为φ2。足够长的收集板MN平行边界ACDB,O到MN板的距离OP=L。假设太空中漂浮着质量为m,电量为q的带正电粒子,它们能均匀地吸附到AB圆弧面上,并被加速电场从静止开始加速,不计粒子间的相互作用和其它星球对粒子引力的影响。
(1)求粒子到达O点时速度的大小;
(2)如图2所示,在边界ACDB和收集板MN之间加一个半圆形匀强磁场,圆心为O,半径为L,方向垂直纸面向内,则发现从AB圆弧面收集到的粒子经O点进入磁场后有2/3能打到MN板上(不考虑过边界ACDB的粒子再次返回),求所加磁感应强度的大小;
(3)同上问,从AB圆弧面收集到的粒子经O点进入磁场后均不能到达收集板MN,求磁感应强度所满足的条件。试写出定量反映收集板MN上的收集效率η与磁感应强度B的关系的相关式子。
(12 分)在平面直角坐标系xoy中,第Ⅰ象限存在沿y轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B.一质量为m、电荷量为q的带正电的粒子从y轴正半轴上的M点以一定的初速度垂直于y轴射入电场,经x轴上的N点与x轴正方向成θ=60°角射入磁场,最后从y轴负半轴上的P点垂直于y轴射出磁场,已知ON=d,如图所示.不计粒子重力,求:
(1)粒子在磁场中运动的轨道半径R;
(2)粒子在M点的初速度的大小;
(3)粒子从M点运动到P点的总时间t.
试题篮
()