如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60º。一质量为m的带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30º角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中磁感应强度的大小(忽略粒子重力)。
如图所示,粒子源O产生初速度为零、电荷量为q、质量为m的正离子,被电压为的加速电场加速后通过直管,在到两极板等距离处垂直射入平行板间的偏转电场,两平行板间电压为2。离子偏转后通过极板MN上的小孔S离开电场。已知ABC是一个外边界为等腰三角形的匀强磁场区域,磁场方向垂直纸面向外,边界AB=AC=L,,离子经过一段匀速直线运动,垂直AB边从AB中点进入磁场。(忽略离子所受重力)
(1)若磁场的磁感应强度大小为,试求离子在磁场中做圆周运动的半径;
(2)若离子能从AC边穿出,试求磁场的磁感应强度大小的范围。
在边长为a的等边三角形ABC区域内有一匀强磁场,磁感应强度为B,方向垂直纸面向里,一带正电的粒子质量为m,电量为q,由BC边中点O沿平行于AB的方向射入磁场,速度大小为v0,忽略粒子的重力.
(1)若粒子刚好垂直AB边飞出磁场,求粒子在磁场中的运动时间;
(2)如果要求粒子在磁场中的飞行时间最长,求粒子的速度必须满足的条件。
如图(a)所示,在以直角坐标系xOy的坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直xOy所在平面的匀强磁场。一带电粒子由磁场边界与x轴的交点A处,以速度v0沿x轴负方向射入磁场,粒子恰好能从磁场边界与y轴的交点C处,沿y轴正方向飞出磁场,不计带电粒子所受重力。
(1)求粒子的荷质比。(要求画出粒子在磁场中运动轨迹的示意图)
(2)若磁场的方向和所在空间的范围不变,而磁感应强度的大小变为B′,该粒子仍从A处以相同的速度射入磁场,粒子飞出磁场时速度的方向相对于入射方向改变了θ角,如图(b)所示,求磁感应强度B′的大小。(要求画出粒子在磁场中运动轨迹的示意图)
图中左边有一对平行金属板,两板相距为d,电压为V;两板之间有匀强磁场,磁感应强度大小为B0,方向与金属板面平行并垂直于纸面向里,图中右边有一半径为R、圆心为O的圆形区域,区域内也存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向里.一电荷量为q的正离子沿平行于金属板面、垂直于磁场的方向射入平行金属板之间,沿同一方向射出平行金属板之间的区域,并沿直径EF方向射入磁场区域,最后从圆形区域边界上的G点射出.已知弧所对应的圆心角为θ.不计重力.求
(1)离子速度的大小;
(2)离子的质量.
如图所示,半径为r的半圆形区域内分布着垂直纸面向里的匀强磁场,磁感应强度为B.半圆的左边分别有两平行金属网M和金属板 N,M、 N两板所接电压为U,板间距离为d.现有一群质量为m、电荷量为q的带电粒子(不计重力)由静止开始从金属板 N上各处开始加速,最后均穿过磁场右边线PQ.求这些粒子到达磁场右边线PQ的最长时间和最短时间差.
如右图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B=0.10 T,磁场区域半径r= m,左侧区圆心为O1,磁场向里,右侧区圆心为O2,磁场向外.两区域切点为C.今有质量m=3.2×10-26 kg.带电荷量q=1.6×10-19 C的某种离子,从左侧区边缘的A点以速度v=106 m/s正对O1的方向垂直磁场射入,它将穿越C点后再从右侧区穿出.求:
(1)该离子通过两磁场区域所用的时间.
(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离为多大?(侧移距离指垂直初速度方向上移动的距离)
如图所示,有一半径为R1=1m的圆形磁场区域,圆心为O,另有一外半径为R2=m、内半径为R1的同心环形磁场区域,磁感应强度大小均为B=0.5T,方向相反,均垂直于纸面,一带正电粒子从平行极板下板P点静止释放,经加速后通过上板小孔Q,垂直进入环形磁场区域,已知点P、Q、O在同一竖直线上,上极板与环形磁场外边界相切,粒子比荷q/m=4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应,求:
(1)若加速电压U1=1.25×102V,则粒子刚进入环形磁场时的速度多大?
(2)要使粒子不能进入中间的圆形磁场区域,加速电压U2应满足什么条件?
(3)若改变加速电压大小,可使粒子进入圆形磁场区域,且能水平通过圆心O,最后返回到出发点,则粒子从Q孔进入磁场到第一次经过O点所用的时间为多少?
如右图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A2A4为边界的两个半圆形区域Ⅰ、Ⅱ中,A2A4与A1A3的夹角为60°。一质量为m,带电量为+q的粒子以某一速度从Ⅰ区的边缘点A1处沿与A1A3成30°角的方向射入磁场,随后该粒子以垂直于A2A4的方向经过圆心O进入Ⅱ区,最后再从A4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t,求Ⅰ区和Ⅱ区中的磁感应强度的大小。(忽略粒子重力)。
如图所示,在半径为a的圆形区域内充满磁感应强度大小为的均匀磁场,其方向垂直于纸面向里.在圆形区域平面内固定放置一绝缘材料制成的边长为L=1.2a的刚性等边三角形框架,其中心位于圆形区域的圆心.边上点(DS=L/2)处有一发射带电粒子源,发射粒子的方向皆在图示平面内且垂直于边,发射粒子的电量皆为(>0),质量皆为,但速度有各种不同的数值.若这些粒子与三角形框架的碰撞均无机械能损失,并要求每一次碰撞时速度方向垂直于被碰的边.试问:(1)若发射的粒子速度垂直于边向上,这些粒子中回到点所用的最短时间是多少?(2)若发射的粒子速度垂直于边向下,带电粒子速度的大小取哪些数值时可使点发出的粒子最终又回到点?这些粒子中,回到点所用的最短时间是多少?(不计粒子的重力和粒子间的相互作用)
如图所示,带电平行金属板PQ和MN之间的距离为d;两金属板之间有垂直纸面向里的匀强磁场,磁感应强度大小为B。如图建立坐标系,x轴平行于金属板,与金属板中心线重合,y轴垂直于金属板。区域I的左边界在y轴,右边界与区域II的左边界重合,且与y轴平行;区域II的左、右边界平行。在区域I和区域II内分别存在匀强磁场,磁感应强度大小均为B,区域I内的磁场垂直于Oxy平面向外,区域II内的磁场垂直于Oxy平面向里。一电子沿着x轴正向以速度v0射入平行板之间,在平行板间恰好沿着x轴正向做直线运动,并先后通过区域I和II。已知电子电量为e,质量为m,区域I和区域II沿x轴方向宽度均为。不计电子重力。
(1)求两金属板之间电势差U;
(2)求电子从区域II右边界射出时,射出点的纵坐标y;
(3)撤除区域I中的磁场而在其中加上沿x轴正向的匀强电场,使得该电子刚好不能从区域II的右边界飞出。求电子两次经过y轴的时间间隔t。
如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板和,两极板中心各有一小孔、,两极板间电压的变化规律如图乙所示,正反向电压的大小均为,周期为。在时刻将一个质量为、电量为的粒子由静止释放,粒子在电场力的作用下向右运动,在时刻通过垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)
(1)求粒子到达时的速度大小和极板距离
(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。
(3)若已保证了粒子未与极板相撞,为使粒子在时刻再次到达,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小
如右图a所示,间距为d的平行金属板MN与一对光滑的平行导轨相连,平行导轨间距L=d/2,一根导体棒ab以一定的初速度向右匀速运动,棒的右端存在一个垂直纸面向里,大小为B的匀强磁场。棒进入磁场的同时,粒子源P释放一个初速度为0的带电粒子,已知带电粒子质量为m,电量为q.粒子能从N板加速到M板,并从M板上的一个小孔穿出。在板的上方,有一个环形区域内存在大小也为B,垂直纸面向外的匀强磁场。已知外圆半径为2d, 里圆半径为d. 两圆的圆心与小孔重合(粒子重力不计)
(1)判断带电粒子的正负,并求当ab棒的速度为vo时,粒子到达M板的速度v;
(2)若要求粒子不能从外圆边界飞出,则v0的取值范围是多少?
(3) 若棒ab的速度v0只能是,则为使粒子不从外圆飞出,则可以控制导轨区域磁场的宽度S(如图b所示),那该磁场宽度S应控制在多少范围内
在如图所示的空间里,存在垂直纸面向里的匀强磁场,磁感应强度为.在竖直方向存在交替变化的匀强电场如图(竖直向上为正),电场大小为.一倾角为θ足够长的光滑绝缘斜面放置在此空间.斜面上有一质量为m,带电量为-q的小球,从t=0时刻由静止开始沿斜面下滑,设第5秒内小球不会离开斜面,重力加速度为g
求:(1)求第1秒末小球的速度大小.
(2)第6秒内小球离开斜面的最大距离.
(3)若第19秒内小球仍未离开斜面,θ角应满足什么条件?
如图所示,在空间中存在垂直纸面向里的场强为B匀强磁场,其边界AB、CD的宽度为d,在左边界的Q点处有一质量为m,带电量为负q的粒子沿与左边界成30o的方向射入磁场,粒子重力不计.求:
(1)带电粒子能从AB边界飞出的最大速度?
(2)若带电粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示的匀强电场中减速至零且不碰到负极板,则极板间电压及整个过程中粒子在磁场中运动的时间?
(3)若带电粒子的速度是(2)中的倍,并可以从Q点沿纸面各个方向射入磁场,则粒子能打到CD边界的范围?
试题篮
()