(18分)如图所示,在平面直角坐标系中的三角形FGH区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B,三点坐标分别为F( -3L,5L)、G( -3L, -3L)、H(5L,-3L)。坐标原点O处有一体积可忽略的粒子发射装置,能够连续不断的在该平面内向各个方向均匀的发射速度大小相等的带正电的同种粒子,单位时间内发射粒子数目稳定。粒子的质量为m,电荷量为q,不计粒子间的相互作用以及粒子的重力。
(1)速率在什么范围内所有粒子均不可能射出该三角形区域?
(2)如果粒子的发射速率为,设在时间t内粒子源发射粒子的总个数为N,在FH边上安装一个可以吸收粒子的挡板,那么该时间段内能够打在挡板FH上的粒子有多少?并求出挡板上被粒子打中的长度。
如图所示,在第一象限有一匀强电场,场强大小为E,方向与y轴平行;在x轴下方有一匀强磁场,磁场方向与纸面垂直,一质量为m,电荷量为-q(q>0)的粒子以平行于x轴的速度从y轴上的P点处射入电场,在x轴上的Q点处进入磁场,并从坐标原点O离开磁场,粒子在磁场中的运动轨迹y轴交与M点,已知,。不计重力,求:
(1)M点与坐标原点O间的距;
(2)粒子从P点运动到M点所用的时间。
如图所示,一个质量为m、电荷量为q,不计重力的带电粒子,从x轴上的P(a,0)点,以速度v沿与x轴正方向成60°角射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
(1)判断粒子的电性;
(2)求:匀强磁场的磁感应强度B的大小和粒子通过第一象限的时间。
(12分)如图所示,在无限长的竖直边界AC和DE间,上、下部分分别充满方向垂直于ADEC平面向外的匀强磁场,上部分区域的磁感应强度大小为B0,OF为上、下磁场的水平分界线。质量为m、带电荷量为+q的粒子从AC边界上与O点相距为a的P点垂直于A C边界射入上方区域,经OF上的Q点第一次进入下方区域,Q与O点的距离为3a。不考虑粒子重力
(1)求粒子射入时的速度大小;
(2)要使粒子不从AC边界飞出,求下方区域的磁感应强度应满足的条件;
(3)若下方区域的磁感应强度B=3B0,粒子最终垂直DE边界飞出,求边界DE与AC 间距离的可能值。
在如图所示的直角坐标系中,x轴的上方存在与x轴正方向成45°角斜向右下方的匀强电场,场强的大小为E=×104 V/m.x轴的下方有垂直于xOy面向外的匀强磁场,磁感应强度的大小为B=2×10-2 T.把一个比荷为=2×108 C/kg的正电荷从坐标为(0,1)的A点处由静止释放.电荷所受的重力忽略不计.
(1)求电荷从释放到第一次进入磁场时所用的时间;
(2)求电荷在磁场中做圆周运动的半径;(保留两位有效数字)
(3)当电荷第二次到达x轴时,电场立即反向,而场强大小不变,试确定电荷到达y轴时的位置坐标.
如图所示,左侧为粒子加速器,A中产生粒子的速度从0到某一很小值之间变化,粒子的质量为m,电荷量为q(q>0),经过电压U加速,穿过狭缝S1进入中间的速度选择器。选择器中的电场强度为E0,磁感应强度为B0。粒子穿过狭缝S2进入右侧的粒子偏转区,最后要求落到屏上的P点。已知偏转区宽度为L,P点离O点的距离为L/2,不计重力。
(1)求粒子刚进入狭缝S1时速度v1的大小(不计粒子在A中的速度);
(2)求粒子通过速度选择器刚进入狭缝S2时速度v2的大小;
(3)请你提出一种简单方案,使粒子在偏转区内从S2飞入恰好能打到屏上的P点。
要求:①在答卷图上的粒子偏转区内画出示意图(注意规范);②求出你所用方案中涉及到的一个最关键的物理量的大小。
如图,在区域I分布有沿-y方向的匀强电场,场强大小为为E,区域II分布有垂直xoy向里的匀强磁场,磁感应强度为B,两区宽度相同,有一个质子从I区的左侧垂直边界入射,恰好垂直II区右边界射出,求质子的入射速度。
一圆筒的横截面如图所示,其圆心为O。筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中,粒子与圈筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移,粒子仍从M板边缘的P处由静止释放粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
如图所示,半径为r的圆形区域内有方向垂直纸面向里的匀强磁场,圆心O1在x轴上,且OO1等于圆的半径。虚线MN平行于x轴且与圆相切,在MN的上方存在匀强电场和匀强磁场,电场强度的大小为E0,方向沿x轴的负方向,磁感应强度的大小为B0,方向垂直纸面向外。两个质量为m、电荷量为q的正粒子a、b,以相同大小的初速度从原点O射入磁场,速度的方向与x轴夹角均为30˚。两个粒子射出圆形磁场后,垂直MN进入MN上方场区中恰好都做匀速直线运动。不计粒子的重力,求:
(1)粒子初速度v的大小。
(2)圆形区域内磁场的磁感应强度B的大小。
(3)只撤去虚线MN上方的磁场B0,a、b两个粒子到达y轴的时间差△t 。
如图所示,在真空中,半径为R的虚线所围的圆形区域内只存在垂直纸面向外的匀强磁场。有一电荷量为q、质量为m的带正电粒子,以速率V0从圆周上的P点沿垂直于半径OOl并指向圆心O的方向进入磁场,从圆周上的O1点飞出磁场后沿两板的中心线O1O2射入平行金属板M和N, O1O2与磁场区域的圆心O在同一直线上。板间存在匀强电场,两板间的电压为U,两板间距为d。不计粒子所受重力。求:
(1)磁场的磁感应强度B的大小;
(2)粒子在磁场中运动的时间;
(3)粒子在两平行板间运动过程中的最大速度与板长L的关系。
质量为m、电荷量为q的带负电粒子由静止开始释放,经M、N板间的电场加速后,从A点垂直于磁场边界射入宽度为d的匀强磁场中,该粒子离开磁场时的位置P偏离入射方向的距离为L,如图所示。已知M、N两板间的电压为U,粒子的重力不计。求:匀强磁场的磁感应强度B。
如图所示,平面直角坐标系第一象限存在竖直向上的匀强电场,距离原点O为3a处有一个竖直放置的荧光屏,荧光屏与x轴相交于Q点,且纵贯第四象限。一个顶角等于30°的直角三角形区域内存在垂直平面向里的匀强磁场,三角形区域的一条直角边ML与y轴重合,且ML被x轴垂直平分。已知ML的长度为6a,磁感应强度为B,电子束以相同的速度v0从LO区间垂直y轴和磁场方向射入直角三角形区域。从y=-2a射入磁场的电子运动轨迹恰好经过原点O,假设第一象限的电场强度大小为E=Bv0,试求:
(1)电子的比荷;
(2)电子束从+y轴上射入电场的纵坐标范围;
(3)从磁场中垂直于y轴射入电场的电子打到荧光屏上距Q点的最远距离。
如图甲所示,粒子源能连续释放质量为m,电荷量为+q,初速度近似为零的粒子(不计重力),粒子从正极板附近射出,经两金属板间电场加速后,沿y轴射入一个边界为矩形的匀强磁场中,磁感应强度为B,磁场方向垂直纸面向里.磁场的四条边界分别是y =0,y=a,x=-1.5a,x=1.5a.两金属板间电压随时间均匀增加,如图乙所示.由于两金属板间距很小,微粒在电场中运动时间极短,可认为微粒加速运动过程中电场恒定.
(1)求微粒分别从磁场上、下边界射出时对应的电压范围;
(2)微粒从磁场左侧边界射出时,求微粒的射出速度相对进入磁场时初速度偏转角度的范围,并确定在左边界上出射范围的宽度d .
如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O和y轴上的点A(0,L)。一质量为m、电荷量为e的电子从A点以初速度v0平行于x轴正方向射入磁场,并从x轴上的B点射出磁场,射出B点时的速度方向与x轴正方向的夹角为60°。求:
(1)匀强磁场的磁感应强度B的大小;
(2)电子在磁场中运动的时间t。
试题篮
()