如图甲所示,平行金属板PQ、MN水平地固定在地面上方的空间,金属板长 L=20cm,两板间距d=10cm,两板间的电压UMP=100V。在距金属板M端左下方某位置有一粒子源A,从粒子源斜向右上连续发射速度相同的带电粒子,发射速度方向与竖直方向成300夹角,射出的带电粒子在空间通过一垂直于纸面向里的磁感应强度B=0.01T的正三角形区域匀强磁场(图中未画出)后,恰好从金属板 PQ左端的下边缘水平进入两金属板间,带电粒子在电场力作用下恰好从金属板MN的右边缘飞出。已知带电粒子的比荷=2.0×106C/kg,粒子重力不计,(计算结果可用根号表示)。求:
(1)带电粒子的电性及射入电场时的速度大小;
(2)正三角形匀强磁场区域的最小面积;
(3)若两金属板间改加如图乙所示的电压,在哪些时刻进入两金属板间的带电粒子不碰到极板而能够飞出两板间。
如图所示,一个质量为m,电荷量+q的带电微粒(重力忽略不计),从静止开始经U1电压加速后,水平进入两平行金属板间的偏转电场中,金属板长L,两板间距d,微粒射出偏转电场时的偏转角θ=30°,又接着进入一个方向垂直于纸面向里的匀强磁场区,求:
(1)微粒进入偏转电场时的速度v0是多大?
(2)两金属板间的电压U2是多大?
(3)若该匀强磁场的磁感应强度B,微粒在磁场中运动后能从左边界射出,则微粒在磁场中的运动时间为多少?
(4)若该匀强磁场的宽度为D,为使微粒不会从磁场右边射出,该匀强磁场的磁感应强度B至少多大?
如图,直线MN 上方有平行于纸面且与MN成45。的有界匀强电场,电场强度大小未知;MN下方为方向垂直于纸面向里的有界匀强磁场,磁感应强度大小为B。今从MN_上的O点向磁场中射入一个速度大小为v、方向与MN成45。角的带正电粒子,该粒子在磁场中运动时的轨道半径为R。若该粒子从O点出发记为第一次经过直线MN,而第五次经过直线MN时恰好又通过O点。不计粒子的重力。求:
(1)电场强度的大小;
(2)该粒子从O点出发,第五次经过直线MN时又通过O点的时间
(3)该粒子再次从O点进入磁场后,运动轨道的半径;
(14分)如图所示,在MN左侧有相距为d的两块正对的平行金属板P、Q,板长L=,两板带等量异种电荷,上极板带负电。在MN右侧存在垂直于纸面的矩形匀强磁场(图中未画出),其左边界和下边界分别与MN、AA′重合(边界上有磁场)。现有一带电粒子以初速度v0沿两板中央OO′射入,并恰好从下极板边缘射出,又经过在矩形有界磁场中的偏转,最终垂直于MN从A点向左水平射出。已知A点与下极板右端的距离为d。不计带电粒子重力。求:
(1)粒子从下极板边缘射出时的速度;
(2)粒子从O运动到A经历的时间;
(3)矩形有界磁场的最小面积。
如图所示是质谱仪示意图,图中离子源S产生电荷量为q的离子,经电压为U的电场加速后,由A点垂直射人磁感应强度为B的有界匀强磁场中,经过半个圆周,打在磁场边界底片上的P点,测得PA=d,求离子的质量m。
如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里。位于极板左侧的粒子源沿x轴间右连接发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t时间内两板间加上如图乙所示的电压(不考虑极边缘的影响)。已知t=0时刻进入两板间的带电粒子恰好在t0时,刻经极板边缘射入磁场。上述m、q、l、t0、B为已知量。(不考虑粒子间相互影响及返回板间的情况)
(1)求电压U的大小。
(2)求时进入两板间的带电粒子在磁场中做圆周运动的半径。
(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间。
在xOy平面内有许多电子(质量为m、电量为e),从坐标O不断以相同速率v0沿不同方向射入第一象限,如图所示。现加一个垂直于xOy平面向内、磁感强度为B的匀强磁场,要求这些电子穿过磁场后都能平行于x轴向x轴正方向运动,求符合该条件磁场的最小面积。
一质量为m、带电量为q的粒子以速度v0从O点沿y轴正方向射入磁感强度为B的一圆形匀强磁场区域,磁场方向垂直于纸面,粒子飞出磁场区后,从b处穿过x轴,速度方向与x轴正向夹角为30°,如图所示(粒子重力忽略不计)。试求:圆形磁场区的最小面积;
如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R。以O为圆心、R为半径的圆形区域内存在磁感应强度为B.方向垂直纸面向外的匀强磁场。D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板。质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场。粒子在s1处的速度和粒子所受的重力均不计。当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值。
如图宽为d的有界磁场的边界为PQ、MN,一个质量为m,带电荷量为-q的微粒沿图示方向垂直射入磁场,磁感应强度为B,要使该粒子不能从边界MN射出,此粒子入射速度的最大值是多大?
如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场。一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动。当电子第一次穿越x轴时,恰好到达C点;当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点。C、D两点均未在图中标出。已知A、C点到坐标原点的距离分别为d、2d。不计电子的重力。求
(1)电场强度E的大小;
(2)磁感应强度B的大小;
(3)电子从A运动到D经历的时间t.
如图所示,两平行金属板E、F之间电压为U,两足够长的平行边界MN、PQ区域内,有垂直纸面向外的匀强磁场,磁感应强度为B。一质量为m、带电量为+q的粒子(不计重力),由E板中央处静止释放,经F板上的小孔射出后,垂直进入磁场,且进入磁场时与边界MN成60°角,最终粒子从边界MN离开磁场。求:
(1)粒子在磁场中做圆周运动的半径r;
(2)两边界MN、PQ的最小距离d;
(3)粒子在磁场中运动的时间t。
如图所示,等边三角形AQC的边长为2L,P、D分别为AQ、AC的中点.水平线QC以下是水平向左的匀强电场,区域Ⅰ(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度大小为B0;区域Ⅱ(三角形APD)内的磁场方向垂直纸面向里,区域Ⅲ(虚线PD之上、三角形APD以外)的磁场与区域Ⅱ大小相等、方向相反.带正电的粒子从Q点正下方,距离Q为L的O点以某一速度射入电场,在电场力作用下以速度v0垂直QC到达该边中点N,经区域Ⅰ再从P点垂直AQ射入区域Ⅲ(粒子重力忽略不计).求:
(1)求该粒子的比荷;
(2)求该粒子从O点运动到N点的时间t1和匀强电场E;
(3)若区域Ⅱ和区域Ⅲ内磁场的磁感应强度为3B0,则粒子经过一系列运动后会返回至O点,求粒子从N点出发再回到N点的运动过程所需的时间t.
如下图,竖直平面坐标系xOy的第一象限,有垂直xOy面向外的水平匀强磁场和竖直向上的匀强电场,大小分别为B和E;第四象限有垂直xOy面向里的水平匀强电场,大小也为E;第三象限内有一绝缘光滑竖直放置的半径为R的半圆轨道,轨道最高点与坐标原点O相切,最低点与绝缘光滑水平面相切于N.一质量为m的带电小球从y轴上(y>0)的P点沿x轴正方向进入第一象限后做圆周运动,恰好通过坐标原点O,且水平切入半圆轨道并沿轨道内侧运动,过N点水平进入第四象限,并在电场中运动(已知重力加速度为g).
(1)判断小球的带电性质并求出其所带电荷量;
(2)P点距坐标原点O至少多高;
(3)若该小球以满足(2)中OP最小值的位置和对应速度进入第一象限,通过N点开始计时,经时间t=2小球距坐标原点O的距离s为多远?
如图所示,M、N为中心开有小孔的平行板电容器的两极板,相距为d,其右侧有一边长为2a的正三角形区域,区域内有垂直纸面向里的匀强磁场,在极板M、N之间加上电压U后,M板电势高于N板电势.现有一带正电的粒子,质量为m,电荷量为q,其重力和初速度均忽略不计,粒子从极板M的中央小孔s1处飘入电容器,穿过小孔s2后从距三角形A点a的P处垂直AB方向进入磁场,试求:
(1)粒子到达小孔s2时的速度和从小孔s1运动到s2所用的时间;
(2)若粒子从P点进入磁场后经时间t从AP间离开磁场,求粒子的运动半径和磁感应强度的大小;
(3)若粒子能从AC间离开磁场,磁感应强度应满足什么条件,此时所用最短时间为多少?
试题篮
()