如图所示,一个质量为m、电荷量为+q的带电粒子,不计重力,在a点以某一初速
度水平向左射入磁场区域Ⅰ,沿曲线abcd运动,ab、bc、cd都是半径为R的圆弧.粒子在每段圆弧上运动的时间都为t.规定垂直于纸面向外的磁感应强度为正,则磁场区域Ⅰ、Ⅱ、Ⅲ三部分的磁感应强度B随x变化的关系可能是图6中的 ( )
图6
(12分)(2010·苏州模拟)质谱仪可测定同位素的组成.现有一束一价的钾39和钾41离
子经电场加速后,沿着与磁场和边界均垂直的方向进入匀强磁场中,
如图所示.测试时规定加速电压大小为U0,但在实验过程中加
速电压有较小的波动,可能偏大或偏小ΔU.为使钾39和钾41打在
照相底片上的区域不重叠,ΔU不得超过多少?(不计离子的重力)
如图所示,在y>0的区域内有沿y轴正方向的匀强电场,在y<0的区域内有垂直坐标平面向里的匀强磁场。一电子(质量为m、电量为e)从y轴上A点以沿x轴正方向的初速度v0开始运动。当电子第一次穿越x轴时,恰好到达C点;当电子第二次穿越x轴时,恰好到达坐标原点;当电子第三次穿越x轴时,恰好到达D点。C、D两点均未在图中标出。已知A、C点到坐标原点的距离分别为d、2d。不计电子的重力。求
(1)电场强度E的大小;
(2)磁感应强度B的大小;
(3)电子从A运动到D经历的时间t.
如图所示,两平行板AB之间存在垂直纸面向里的匀强磁场,两板之间距离及板长均为d。一质子以速度v0从A板中点O垂直A板射入磁场,为使质子能从两板间射出,试求磁感应强度大小的范围。(已知质子的电荷量为e,质量为m)
如图所示,有三个宽度均相等的区域I、Ⅱ、Ⅲ;在区域I和Ⅲ内分别为方向垂直于纸面向外和向里的匀强磁场(虚线为磁场边界面,并不表示障碍物),区域I磁感应强度大小为B,某种带正电的粒子,从孔O1以大小不同的速度沿图示与夹角α=300的方向进入磁场(不计重力)。已知速度为v0和2v0时,粒子仅在区域I内运动且运动时间相同,均为t0。
(1)试求出粒子的比荷q/m、速度为2v0的粒子从区域I射出时的位置离O1的距离L;
(2)若速度为v的粒子在区域I内的运时间为t0/5,在图中区域Ⅱ中O1O2上方加竖直向下的匀强电场,O1O2 下方对称加竖直向上的匀强电场,场强大小相等,使速度为v的粒子每次均垂直穿过I、Ⅱ、Ⅲ区域的边界面并能回到O1点,则请求出所加电场场强大小与区域Ⅲ磁感应强度大小。
如右图所示,磁感应强度大小为B、方向垂直纸面向里的匀强磁场被约束在由边界ab、bc、cd形成的区域内(ab∥cd,bc⊥ab,ab和cd可以向右端无限延伸),一质量为m、电荷量为+q的带电粒子从bc边的中点O处,以大小为v的初速度垂直磁场方向射入此区域,初速度方向与bc边的夹角=30°.已知bc边的长度为L,粒子重力不计,试问:
⑴若粒子最终能从边界ab射出,则初速度v应满足什么条件?
⑵粒子在匀强磁场中运动的最长时间应为多少?
下图为汤姆生在1897年测量阴极射线(电子)的荷质比时所用实验装置的示意图。K为阴极,A1和A2为连接在一起的中心空透的阳极,电子从阴检发出后被电场加速,只有运动方向与A1和A2的狭缝方向相同的电子才能通过,电子被加速后沿方向垂直进入方向互相垂直的电场、磁场的叠加区域。磁场方向垂直纸面向里,电场极板水平放置,电子在电场力和磁场力的共同作用下发生偏转。已知圆形磁场的半径为R,圆心为C。
某校物理实验小组的同学们利用该装置,进行了以下探究测量:
首先他们调节两种场强的大小:当电场强度的大小为E,磁感应强度的大小为B时,使得电子恰好能够在复合场区域内沿直线运动;然后撤去电场,保持磁场和电子的速度不变,使电子只在磁场力的作用下发生偏转,打要荧屏上出现一个亮点P,通过推算得到电子的偏转角为α(即:之间的夹角)。若可以忽略电子在阴极K处的初速度,则:
(1)电子在复合场中沿直线向右飞行的速度为多大?
(2)电子的比荷为多大?
(3)利用上述已知条件,你还能再求出一个其它的量吗?若能,请指出这个量的名称。
如图所示,OACO为置于水平面内的光滑闭合金属导轨,O、C处分别接有短电阻丝(图中用粗线表示),R1=4Ω、R2=8Ω(导轨其它部分电阻不计)。导轨OAC的形状满足(单位:m)。磁感应强度B=0.2T的匀强磁场方向垂直于导轨平面。一足够长的金属棒在水平外力F作用下,以恒定的速率v=5.0m/s水平向右在导轨上从O点滑动到C点,棒与导轨接触良好且始终保持与OC导轨垂直,不计棒的电阻。求:(1)外力F的最大值;(2)金属棒在导轨上运动时电阻丝R1上消耗的最大功率;(3)在滑动过程中通过金属棒的电流I与时间t的关系。
如图所示,在矩形区域abcd内充满垂直纸面向里的匀强磁场,磁感应强度为B,在ad边中点的粒子源,在t=0时刻垂直于磁场发射出大量的同种带电粒子,所有粒子的初速度大小相同,方向与od的夹角分布在0~180°范围内。已知沿od方向发射的粒子在t=t0时刻刚好从磁场边界cd上的p点离开磁场,ab=1.5L,bc=L,粒子在磁场中做圆周运动的半径R=L,不计粒子的重力和粒子间的相互作用,求:
(1)粒子在磁场中的运动周期T和粒子的比荷q/m;
(2)粒子在磁场中运动的最长时间;
(3)t=t0时刻仍在磁场中的粒子所处位置在某一圆弧上,在图中画出该圆弧并说明圆弧的圆心位置以及圆心角大小;
如图所示,一个质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在G处,而G处距A点2d(AG⊥AC).不计离子重力,离子运动轨迹在纸面内.求:
(1)此离子在磁场中做圆周运动的半径r;
(2)离子从D处运动到G处所需时间;
(3)离子到达G处时的动能.
如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行, 不计粒子重力。
(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?
(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?
如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C(重力不计),从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的
偏转角θ=30º,并接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域。已知偏转电场中金属板长L=20cm,两板间距d="17." 3cm。(注意:计算中取1.73)求:
(1)带电微粒进入偏转电场时的速率v1;
(2)偏转电场中两金属板间的电压U2;
(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?
在平面直角坐标系中,的区域存在着电场强度大小均为E的匀强电场,的部分电场沿x轴正向,的区域电场沿x轴负向。的区域存在一个矩形的垂直纸面向外的匀强磁场,磁感应强度大小为B。一个电荷量为q的正电荷从靠近y轴的第一象限内M点沿y轴负方向以初速度开始运动,恰好从N点进入磁场。已知电荷质量为m且不计重力,OM=2ON。
(1)N点坐标;
(2)若粒子经过磁场最后能无限靠近M点,则矩形区域的最小面积是多少;
(3)在(2)的前提下,该粒子由M点出发返回到无限靠近M点所需的时间。
如图所示,真空室内存在宽度为d=8cm的匀强磁场区域,磁感应强度B=0.332T,磁场方向垂直于纸面向里;ab、cd足够长,cd为厚度不计的金箔,金箔右侧有一匀强电场区域,电场强度E=3.32×105N/C,方向与金箔成37°角。紧挨边界ab放一点状α粒子放射源S,可沿纸面向各个方向均匀放射初速率均为v=3.2×106m/s的α粒子,已知α粒子的质量m=6.64×10-27kg,电荷量q=3.2×10-19C。求:
⑴α粒子在磁场中做圆周运动的轨道半径R;
⑵金箔cd被α粒子射中区域的长度L;
⑶设打在金箔上d端离cd中心最远的α粒子沿直线穿出金箔进入电场,在电场中运动通过N点,SN⊥ab且SN=40cm,则此α粒子从金箔上穿出时,损失的动能ΔEk为多少?
(13分) 如图,边长L="0.2" m的正方形abcd区域(含边界)内,存在着垂直于区域的横截面(纸面)向外的匀强磁场,磁感应强度B=5.0×10-2T。带电平行金属板MN、PQ间形成了匀强电场E(不考虑金属板在其它区域形成的电场),MN放在ad边上,两板左端M、P恰在ab边上,两板右端N、Q间有一绝缘挡板EF。EF中间有一小孔O,金属板长度、板间距、挡板长度均为l="0.l" m。在M和P的中间位置有一离子源S,能够正对孔O不断发射出各种速率的带正电离子,离子的电荷量均为q=3.2×l0-19 C,质量均为m=6.4×l0-26 kg。不计离子的重力,忽略离子之间的相互作用及离子打到金属板或挡板上后的反弹。
(l)当电场强度E=104N/C时,求能够沿SO连线穿过孔O的离子的速率。
(2)电场强度取值在一定范围时,可使沿SO连线穿过O并进入磁场区域的离子直接从
bc边射出,求满足条件的电场强度的范围。
试题篮
()