如图所示的坐标平面内,y轴左侧存在方向垂直纸面向外、磁感应强度大小B1=0.20 T的匀强磁场,在y轴的右侧存在方向垂直纸面向里,宽度d=12.5 cm的匀强磁场B2,某时刻一质量m=2.0×10-8 kg、电荷量q=+4.0×10-4 C的带电微粒(重力可忽略不计),从x轴上坐标为(-0.25 m,0)的P点以速度v0=2.0×103 m/s沿y轴正方向运动.试求:
(1)微粒在y轴左侧磁场中运动的轨道半径;
(2)微粒第一次经过y轴时,速度方向与y轴正方向的夹角;
(3)要使微粒不能从右侧磁场边界飞出,B2应满足的条件.
如图所示,边长为L的等边三角形ABC为两有界匀强磁场的理想边界,三角形内的磁场方向垂直纸面向外,磁感应强度大小为B,三角形外的磁场(足够大)方向垂直纸面向里,磁感应强度大小也为B.把粒子源放在顶点A处,它将沿∠A的角平分线发射质量为m、电荷量为q、初速度为v0的带电粒子(粒子重力不计).若从A射出的粒子:①带负电,v0=,第一次到达C点所用时间为t1;②带负电,v0=,第一次到达C点所用时间为t2;③带正电,v0=,第一次到达C点所用时间为t3;④带正电,v0=,第一次到达C点所用时间为t4.则( )
A.t1=T B.t2=T C.t3=T D.t4=T
如图是某离子速度选择器的原理示意图,在一半径为R 的绝缘圆柱形筒内有磁感应强度为B的匀强磁场,方向平行于轴线.在圆柱形筒上某一直径两端开有小孔M、N,现有一束速率不同、比荷均为k的正、负离子,从M孔以α角入射,一些具有特定速度的离子未与筒壁碰撞而直接从N孔射出(不考虑离子间的作用力和重力).则从N孔射出的离子( )
A.是正离子,速率为kBR/cos α |
B.是正离子,速率为kBR/sin α |
C.是负离子,速率为kBR/sin α |
D.是负离子,速率为kBR/cos α |
如图所示,在x轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B.在xOy平面内,从原点O处沿与x轴正方向成θ角(0<θ<π)以速率v发射一个带正电的粒子(重力不计).则下列说法正确的是( )
A.若θ一定,v越大,则粒子在磁场中运动的时间越短
B.若θ一定,v越大,则粒子在磁场中运动的角速度越大
C.若v一定,θ越大,则粒子在磁场中运动的时间越短
D.若v一定,θ越大,则粒子在离开磁场的位置距O点越远
如图所示,在第二象限和第四象限的正方形区域内分别存在着匀强磁场,磁感应强度均为B,方向相反,且都垂直于xOy平面.一电子由P(-d,d)点,沿x轴正方向射入磁场区域Ⅰ.(电子质量为m,电荷量为e,sin 53°=)
(1)求电子能从第三象限射出的入射速度的范围.
(2)若电子从位置射出,求电子在磁场 Ⅰ 中运动的时间t.
(3)求第(2)问中电子离开磁场Ⅱ时的位置坐标.
在如图所示的直角坐标系中,x轴的上方存在与x轴正方向成45°角斜向右下方的匀强电场,场强的大小为E=×104 V/m.x轴的下方有垂直于xOy面向外的匀强磁场,磁感应强度的大小为B=2×10-2 T.把一个比荷为=2×108 C/kg的正电荷从坐标为(0,1)的A点处由静止释放.电荷所受的重力忽略不计.
(1)求电荷从释放到第一次进入磁场时所用的时间;
(2)求电荷在磁场中做圆周运动的半径;(保留两位有效数字)
(3)当电荷第二次到达x轴时,电场立即反向,而场强大小不变,试确定电荷到达y轴时的位置坐标.
在真空室内取坐标系xOy,在x轴上方存在两个方向都垂直于纸面向外的磁场区Ⅰ和II(如图),平行于x轴的虚线MM’和NN’是它们的边界线,两个区域在y方向上的宽度都为d、在x方向上都足够长.Ⅰ区和II区内分别充满磁感应强度为B和的匀强磁场.一带正电的粒子质量为m、电荷量为q,从坐标原点O以大小为v的速度沿y轴正方向射入Ⅰ区的磁场中.不计粒子的重力作用.
(1)如果粒子只是在Ⅰ区内运动而没有到达II区,那么粒子的速度v满足什么条件?粒子运动了多长时间到达x轴?
(2)如果粒子运动过程经过II区而且最后还是从x轴离开磁场,那么粒子的速度v又满足什么条件?并求这种情况下粒子到达x轴的坐标范围?
如图,在区域I分布有沿-y方向的匀强电场,场强大小为为E,区域II分布有垂直xoy向里的匀强磁场,磁感应强度为B,两区宽度相同,有一个质子从I区的左侧垂直边界入射,恰好垂直II区右边界射出,求质子的入射速度。
如图所示,MN表示真空室中垂直于纸面放置的感光板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B. 一个电荷量为q的带电粒子从感光板上的狭缝O处以垂直于感光板的初速度v射入磁场区域,经一次偏转到达P点. 经测量P、O间的距离为l,不计带电粒子受到的重力. 求:
(1)带电粒子所受洛伦兹力的大小;
(2)带电粒子的质量。
如图,在矩形区域abcd区域中,分布有垂直纸面向外的匀强磁场,ab长为L,在ab的中点P处有一电子发射源,出射电子速率取一切可能值,所有电子出射的速度方向均与ab成30°,下列说法正确的是( )
A.只要初速度大小取合适的值,电子可以在磁场中做完整的圆周运动 |
B.电子入射速度越大,在磁场中运动的时间一定越短 |
C.从ad边出射的电子一定比从bc出射的粒子时间长 |
D.当时,cd边无电子射出 |
如图所示、相互垂直,将空间分成两个区域,.区域Ⅰ中有垂直于纸面向外的匀强磁场,区域Ⅱ中有平行于,大小为的匀强电场和另一未知匀强磁场(方向垂直纸面,图中未画出).一束质量为、电量为的粒子以不同的速率(速率范围0~)自点垂直于射入区域Ⅰ.其中以最大速率射入的粒子恰能垂直于进入区域Ⅱ.已知间距为,不计粒子重力以及粒子间的相互作用.试求:
(1)区域Ⅰ中匀强磁场的磁感应强度大小;
(2)为使速率为的粒子进入区域Ⅱ后能沿直线运动,则区域Ⅱ的磁场大小和方向;
(3)分界线上,有粒子通过的区域的长度.
如图所示,半径为R的圆形区域内、外有方向相反的与圆平面垂直的匀强磁场,圆形区域外的匀强磁场范围足够大,磁感应强度大小均为B.一质量为m、电量为q的带正电粒子从圆弧上P点正对圆心O以速度v进入圆形区域内的磁场,经过时间从Q点进入圆形区域外的磁场,不计粒子重力.求:
(1)粒子在圆形区域内的磁场中做匀速圆周运动的半径r;
(2)粒子从P点开始经Q点回到P点的最短时间t2;
(3)若粒子从P点以速度正对圆心O进入圆形区域内的磁场,则粒子是否能在圆形区域内、外磁场中做周期性运动,如果不能,请说明理由;如果能,试求出这个周期.
(8分)如图所示,直线MN上方为磁感应强度为B的足够大的匀强磁场.一电子(质量为m、电荷量为e),以v的速度从点O与MN成30°角的方向射入磁场中,求:
(1)电子从磁场中射出时距O点多远;
(2)电子在磁场中运动的时间为多少.
边长为a的正方形,处于有界磁场如图所示,一束电子以水平速度射入磁场后,分别从A处和C处射出,则vA:vC=__________;所经历的时间之比tA:tC=___________
试题篮
()