翼型降落伞有很好的飞行性能,跳伞运动员可方便地控制转弯等动作。其原理是通过对降落伞的调节,使空气升力和空气摩擦力都受到影响.已知运动员和装备的总质量为,某次跳伞后做匀速直线运动,速度与水平方向的夹角(取),如图1所示.运动员和装备作为一个整体,受力情况作如下简化:空气升力与速度方向垂直,大小为;空气摩擦力与速度方向相反,大小为.其中、相互影响,可由运动员调节,满足图2所示的关系.则运动员匀速的速度是(重力加速度已知)
A. | B. | C. | D. |
如图所示,两根电阻不计的光滑金属导轨竖直放置,导轨上端接电阻R,宽度相同的水平条形区域I和II内有方向垂直导轨平面向里的匀强磁场B, I和II之间无磁场。一导体棒两端套在导轨上,并与两导轨始终保持良好接触,导体棒从距区域I上边界H处由静止释放,在穿过两段磁场区域的过程中,流过电阻R上的电流及其变化情况相同。下面四个图象能定性描述导体棒速度大小与时间关系的是
一物体静止在粗糙水平地面上,现用一大小为F1的水平拉力拉动物体,经过一段时间后其速度变为v,若将水平拉力的大小改为F2,物体从静止开始经过同样的时间后速度变为2v,对于上述两个过程,用WF1、WF2分别表示拉力F1、F2所做的功,Wf1、Wf2分别表示前后两次克服摩擦力所做的功,则
A., |
B., |
C., |
D., |
如图甲所示,物体原来静止在水平面上,用一水平力F拉物体,在F从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a随外力F变化的图象如图乙所示.根据图乙中所标出的数据可计算出( )
A.物体的质量为1 kg |
B.物体的质量为2 kg |
C.物体与水平面间的动摩擦因数为0.35 |
D.物体与水平面间的最大静摩擦力为7N |
如图所示,水平传送带的长度L=6m,皮带轮以速度v顺时针匀速转动,传送带的左端与一光滑圆弧槽末端相切,现有一质量为1kg的物体(视为质点),从高h=1.25m处O点无初速度下滑,物体从A点滑上传送带,物体与传送带间的动摩擦因数为0.2,g取10m/s2,保持物体下落的高度不变,改变皮带轮的速度v,则物体到达传送带另一端的速度vB随v的变化图线是( )
如图甲所示,平行金属板中央有一个静止的电子(不计重力),两板间距离足够大.当两板间加上如图乙所示的交变电压后,在下图中,反映电子速度v、位移x和加速度a三个物理量随时间t的变化规律可能正确的是( )
甲 乙
质量为m的汽车在平直路面上启动,启动过程的速度图象如图所示,从t1时刻起汽车的功率保持不变,整个运动过程中汽车所受阻力恒为Ff,则.
A.0~t1时间内,汽车的牵引力等于m |
B.t1~t2时间内,汽车的功率等于v1 |
C.汽车运动过程中速度v=v1 |
D.t1~t2时间内,汽车的平均速度小于 |
如图1所示,半径为r均匀带电圆形平板,单位面积带电量为σ,其轴线上任意一点P(坐标为x)的电场强度可以由库仑定律和电场强度的叠加原理求出:,方向沿x轴。现考虑单位面积带电量为σ0的无限大均匀带电平板,从其中间挖去一半径为r的圆板,如图2所示。则圆孔轴线上任意一点Q(坐标为x)的电场强度为( )
A. |
B. |
C. |
D. |
示波管的内部结构如图甲所示.如果在偏转电极XX′、YY′之间都没有加电压,电子束将打在荧光屏的中心.如果在偏转电极XX′之间和YY′之间加上图丙所示的几种电压,荧光屏上可能会出现图乙中(a)、(b)所示的两种波形.则( )
A.若XX′和YY′分别加电压(3)和(1),荧光屏上可以出现图乙中(a)所示波形 |
B.若XX′和YY′分别加电压(4)和(1),荧光屏上可以出现图乙中(a)所示波形 |
C.若XX′和YY′分别加电压(3)和(4),荧光屏上可以出现图乙中(b)所示波形 |
D.若XX′和YY′分别加电压(4)和(2),荧光屏上可以出现图乙中(b)所示波形 |
空间有一电场,各点电势φ随位置的变化情况如图所示.下列说法正确的是( )
A.O点的电场强度一定为零 |
B.-x1与-x2点的电场强度相同 |
C.将负电荷从-x1移到x1电荷的电势能增大 |
D.-x1和x1两点在同一等势面上 |
竖直面内固定一个V字形光滑绝缘支架如图所示,直杆AO、BO与水平面夹角都是,各套着一个质量均为m的小球,AO杆上小球带正电,电荷量为2q,BO杆上小球带正电,电荷量为q .让两个小球从同一高度自由释放,问下滑到离水平面多高时,两小球的速度达到最大?(静电力常量为k,两小球始终能看作点电荷)( )
A. | B. | C. | D. |
如图所示,半径分别为R和r(R>r)的甲、乙两光滑半圆轨道放置在同一竖直平面内,两轨道之间由一光滑水平轨道CD相连,在水平轨道CD上有一轻弹簧被a、b两个质量均为m的小球夹住,但不拴接。同时释放两小球,弹性势能全部转化为两球的动能,若两球获得相等动能,其中有一只小球恰好能通过最高点,两球离开半圆轨道后均做平抛运动落到水平轨道的同一点(不考虑小球在水平面上的反弹)。则
A.恰好通过最高点的是b球 |
B.弹簧释放的弹性势能为5mgR |
C.a球通过最高点对轨道的压力为mg |
D.CD两点之间的距离为 |
如图所示,两个有界匀强磁场,磁感应强度大小分别为B和2B,方向分别垂直纸面向里和向外,其宽度均为L,距磁场区域的左侧L处,有一边长为L的正方形导体线框,总电阻为R,且线框平面与磁场方向垂直,线框一边平行于磁场边界,现用外力F使线框以图示方向的速度v匀速穿过磁场区域,以初始位置为计时起点,规定:线框中电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里时磁通量Φ为正,外力F向右为正。则以下关于线框中的磁通量Φ、感应电动势E、外力F和电功率P随时间变化的图象中正确的是
如图所示,在空间中有一坐标系Oxy,其第一象限内充满着两个匀强磁场区域I和 Ⅱ,直线OP是它们的边界.区域I中的磁感应强度为B,方向垂直纸面向外;区域Ⅱ中的磁感应强度为2B,方向垂直纸面向内.边界上的P点坐标为(4L,3L).一质量为 m、电荷量为q的带正电粒子从P点平行于y轴负方向射人区域I,经过一段时间后, 粒子恰好经过原点O.忽略粒子重力,已知sin37°=0.6,cos37°=0.8.则下列说法中不正确的是
A.该粒子一定沿y轴负方向从O点射出 |
B.该粒子射出时与y轴正方向夹角可能是74° |
C.该粒子在磁场中运动的最短时间 |
D.该粒子运动的可能速度为 |
试题篮
()