双缝干涉实验装置的截面图如图所示。光源 到 、 的距离相等, 点为 、 连线中垂线与光屏的交点。光源 发出的波长为 的光,经 出射后垂直穿过玻璃片传播到 点,经 出射后直接传播到 点,由 到 点与由 到 点,光传播的时间差为△ .玻璃片厚度为 ,玻璃对该波长光的折射率为1.5,空气中光速为 ,不计光在玻璃片内的反射。以下判断正确的是
A. |
△ |
B. |
△ |
C. |
△ |
D. |
△ |
氚核 发生 衰变成为氦核 .假设含氚材料中 发生 衰变产生的电子可以全部定向移动,在 时间内形成的平均电流为 .已知电子电荷量为 ,在这段时间内发生 衰变的氚核 的个数为
A. |
|
B. |
|
C. |
|
D. |
|
一质量为 的乘客乘坐竖直电梯下楼,其位移 与时间 的关系图象如图所示。乘客所受支持力的大小用 表示,速度大小用 表示。重力加速度大小为 。以下判断正确的是
A. |
时间内, 增大, |
B. |
时间内, 减小, |
C. |
时间内, 增大, |
D. |
时间内, 减小, |
如图, 是锐角三角形 最大的内角,电荷量为 的点电荷固定在 点。下列说法正确的是
A. |
沿 边,从 点到 点,电场强度的大小逐渐增大 |
B. |
沿 边,从 点到 点,电势先增大后减小 |
C. |
正电荷在 点的电势能比其在 点的电势能大 |
D. |
将正电荷从 点移动到 点,电场力所做的总功为负 |
真空中有一匀强磁场,磁场边界为两个半径分别为 和 的同轴圆柱面,磁场的方向与圆柱轴线平行,其横截面如图所示。一速率为 的电子从圆心沿半径方向进入磁场。已知电子质量为 ,电荷量为 ,忽略重力。为使该电子的运动被限制在图中实线圆围成的区域内,磁场的磁感应强度最小为
A. |
|
B. |
|
C. |
|
D. |
|
如图,悬挂甲物体的细线拴牢在一不可伸长的轻质细绳上 点处;绳的一端固定在墙上,另一端通过光滑定滑轮与物体乙相连。甲、乙两物体质量相等。系统平衡时, 点两侧绳与竖直方向的夹角分别为 和 .若 ,则 等于
A. |
|
B. |
|
C. |
|
D. |
|
"嫦娥四号"探测器于2019年1月在月球背面成功着陆,着陆前曾绕月球飞行,某段时间可认为绕月做匀速圆周运动,圆周半径为月球半径的 倍。已知地球半径 是月球半径的 倍,地球质量是月球质量的 倍,地球表面重力加速度大小为 。则"嫦娥四号"绕月球做圆周运动的速率为
A. |
|
B. |
|
C. |
|
D. |
|
甲、乙两个物块在光滑水平桌面上沿同一直线运动,甲追上乙,并与乙发生碰撞,碰撞前后甲、乙的速度随时间的变化如图中实线所示。已知甲的质量为 ,则碰撞过程两物块损失的机械能为
A. |
|
B. |
|
C. |
|
D. |
|
如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。圆环初始时静止。将图中开关 由断开状态拨至连接状态,电路接通的瞬间,可观察到
A. |
拨至 端或 端,圆环都向左运动 |
B. |
拨至 端或 端,圆环都向右运动 |
C. |
拨至 端时圆环向左运动,拨至 端时向右运动 |
D. |
拨至 端时圆环向右运动,拨至 端时向左运动 |
一物块在高 、长 的斜面顶端从静止开始沿斜面下滑,其重力势能和动能随下滑距离 的变化如图中直线Ⅰ、Ⅱ所示,重力加速度取 .则
A. |
物块下滑过程中机械能不守恒 |
B. |
物块与斜面间的动摩擦因数为0.5 |
C. |
物块下滑时加速度的大小为 |
D. |
当物块下滑 时机械能损失了 |
一匀强磁场的磁感应强度大小为 ,方向垂直于纸面向外,其边界如图中虚线所示, 为半圆, 、 与直径 共线, 间的距离等于半圆的半径。一束质量为 、电荷量为 的粒子,在纸面内从 点垂直于 射入磁场,这些粒子具有各种速率。不计粒子之间的相互作用。在磁场中运动时间最长的粒子,其运动时间为
A. |
|
B. |
|
C. |
|
D. |
|
图(a)所示的电路中, 与 间接一智能电源,用以控制电容器 两端的电压 .如果 随时间 的变化如图(b)所示,则下列描述电阻 两端电压 随时间 变化的图象中,正确的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,一同学表演荡秋千。已知秋千的两根绳长均为 ,该同学和秋千踏板的总质量约为 。绳的质量忽略不计。当该同学荡到秋千支架的正下方时,速度大小为 ,此时每根绳子平均承受的拉力约为
A. |
|
B. |
|
C. |
|
D. |
|
火星的质量约为地球质量的 ,半径约为地球半径的 ,则同一物体在火星表面与在地球表面受到的引力的比值约为
A. |
0.2 |
B. |
0.4 |
C. |
2.0 |
D. |
2.5 |
试题篮
()