如图是有两个量程的电流表,当使用a、b两个端点时,量程为3A,当使用a、c两个端点时,量程为0.6A。已知表头的内阻Rg为200Ω,满偏电流Ig为2mA,求电阻R1、R2的值。
在如图所示的空间区域里,y轴左方有一匀强电场,场强方向跟y轴正方向成60°,大小为;y轴右方有一垂直纸面向里的匀强磁场,磁感应强度B=0.20T。有一质子以速度=2.0×m/s,由轴上的A点(10cm,0)沿与轴正方向成30°斜向上射入磁场,在磁场中运动一段时间后射入电场,后又回到磁场,经磁场作用后又射入电场。已知质子质量近似为=1.6×kg,电荷=1.6×C,质子重力不计。求:
(1)质子在磁场中做圆周运动的半径;
(2)质子从开始运动到第二次到达y轴所经历的时间;(计算结果保留3位有效数字)
(3)质子第三次到达y轴的位置坐标。
如图所示,质量为m的带电小球用长为L的绝缘细线(不可伸长)悬挂于O点,并处在场强为E、水平向左的匀强电场中。球静止时,丝线与竖直方向的夹角为θ=370。现将小球拉至虚线所示位置(细线水平拉直,与O点相同高度)后从静止开始释放,则:
(1)小球带何种电荷,电量是多少?
(2)求小球摆动到最低点时速度v的大小和细线所受拉力FT的大小。
如图所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场,然后让粒子经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到底片D上。
(1)粒子进入磁场时的速率。
(2)求粒子在磁场中运动的轨道半径。
如图所示,有一对平行金属板,两板相距为0.05m,电压为10V。两板之间有匀强磁场,磁感应强度大小为B0=0.1T,方向与金属板面平行并垂直于纸面向里。图中右边有一半径R为0.1m、圆心为O的圆形区域内也存在匀强磁场,磁感应强度大小为B=T,方向垂直于纸面向里。一正离子沿平行于金属板面,从A点垂直于磁场的方向射入平行金属板之间,沿直线射出平行金属板之间的区域,并沿直径CD方向射入圆形磁场区域,最后从圆形区域边界上的F点射出。已知速度的偏向角 ,不计离子重力。求:
(1)离子速度v的大小;
(2)离子的比荷q/m;
(3)离子在圆形磁场区域中运动时间t。
PQ为一根足够长的绝缘细直杆,处于竖直的平面内,与水平夹角为q斜放,空间充满磁感应强度B的匀强磁场,方向水平如图所示。一个质量为m,带有负电荷的小球套在PQ杆上,小球可沿杆滑动,球与杆之间的摩擦系数为(),小球带电量为q。现将小球由静止开始释放,试求小球在沿杆下滑过程中:
(1)小球最大加速度和此时小球的速度大小;
(2)下滑过程中,小球可达到的最大速度为多大?
如图所示,一小球从倾角θ为37º的足够长的斜面顶端做平抛运动,初速度为8m/s,A点是小球离斜面最远点。
(1)求小球从抛出到再次落到斜面上的时间;
(2)求A点离斜面的距离;
(3)将A点前后足够小的一段轨迹视为圆弧,求这段圆弧的半径(曲率半径)及小球在A点的向心加速度(法向加速度)与切向加速度。
小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m的小球,甩动手腕,使球在竖直平面内做圆周运动。当球某次运动到最低点时,绳突然断掉,球飞行水平距离d后落地,如图所示。已知握绳的手离地面高度为d,手与球之间的绳长为3d/4,重力加速度为g。忽略手的运动半径和空气阻力,试分析求解:
(1)绳断时球的速度大小v1;
(2)球落地时的速度大小v2;
(3)绳能承受的最大拉力多大?
(4)改变绳长,使球重复上述运动。若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,则绳长应为多少?最大水平距离为多少?
小轿车以20m/s的速度在平直公路上匀速行驶,司机突然发现正前方有个收费站,经20s后司机才刹车使车匀减速恰停在缴费窗口,缴费后匀加速到20m/s后继续匀速前行。已知小轿车刹车时的加速度为2m/s2,停车缴费所用时间为30s,启动时加速度为1m/s2。
(1)司机是在离收费窗口多远处发现收费站的。
(2)因国庆放假期间,全国高速路免费通行,小轿车可以不停车通过收费站,但要求轿车通过收费窗口前9m区间速度不超过6m/s,则国庆期间该小轿车应离收费窗口至少多远处开始刹车?因不停车通过可以节约多少时间?
电动自行车是一种环保、方便的交通工具。某天,警察正骑着电动自行车停在路边,突然一个抢了钱包的小偷从警察身边掠过,警察便立即驾驶电动自行车前去追赶,最终制服小偷。现假定他们都沿直线运动,小偷始终以6m/s的速度做匀速直线运动,当小偷经过警察时,警察便立即驾驶电动自行车匀加速追赶,加速度为2m/s2,则:
(1)警察在追上小偷前,他们之间的最大距离是多少?
(2)警察在距出发点多远处追上小偷?
(3)其实,按照国家标准,为了安全,每辆电动自行车行驶速度的最大值在出厂时便做出了设定,电动自行车在行驶过程中速度不会超过该值。如果警察全力追赶该小偷,在距离出发点37.5m追上。那么该警用电动自行车所能达到的最大速度为多少?假定电动自行车加速时的加速度仍为2m/s2。
某人站在一平台上,用长L=0.6m的轻细线拴一个质量为m=0.6kg的小球,让它在竖直平面内以O点为圆心做圆周运动,当小球转到最高点A时,人突然撒手。经0.8s小球落地,落地点B与A点的水平距离BC=4.8m,不计空气阻力,g=10m/s2。求:
(1)A点距地面高度;
(2)小球离开最高点时的线速度及角速度大小;
(3)人撒手前小球运动到A点时,绳对球的拉力大小。
如图所示,一辆平板小车静止在水平地面上,小车的质量M="3.0" kg,平板车长度L="l.0" m,平板车的上表面距离店面的高度H="0.8" m。某时刻,一个质量m="1.0" kg的小物块(可视为质点)以v0="3.0" m/s的水平速度滑上小车的左端,与此同时相对小车施加一个F="15" N的水平向右的恒力。物块与小车之间的动摩擦因数μ=0.30,不计小车与地面间的摩擦。重力加速度g取10 m/s2。求:
(1)物块相对小车滑行的最大距离;
(2)物块落地时,物块与小车左端之间的水平距离。
如图甲所示,一质量为2.0kg的物体静止在水平面上,物体与水平面间的动摩擦因数为0.20。从 t= 0时刻起,物体受到水平方向的力F的作用而开始运动,8s内 F随时间t变化的规律如图乙所示。求:(g取10m/s 2)
(1)物体在0-4s的加速度大小a1,4s末的速度大小v1。
(2)物体在4-5s的加速度大小a2,,5s末的速度大小v2。
(3)在图丙的坐标系中画出物体在8s内的v-t图象;(要求计算出相应数值)
将金属块m用压缩的轻弹簧卡在一个矩形的箱中,如图所示,在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动,金属块始终没有离开上顶板。当箱以a="2.0" m/s2的加速度竖直向上做匀减速运动时,上顶板的压力显示压力为6.0 N,下底板的压力传感器显示的压力为10.0 N。(g="10" m/s2)
(1)金属块的重力多大?
(2)若上顶板压力传感器的示数是下底板压力传感器的示数的0.4倍,试求箱的加速度大小和方向。
(3)要使上顶板压力传感器的示数为零,箱沿竖直方向运动的情况可能是怎样的?
试题篮
()