(22分)整个装置图如图所示,在光滑绝缘水平面上固定一竖直的表面光滑的挡板,ABCD为挡板与水平面的交线,其中ABC为直线,CD为半径R=4.0 m的圆弧,C点为AC直线与CD圆弧的切点。整个装置置于真空中两有界的与水平面平行的匀强电场中,MN为两电场的分界面与水平面的交线,且MN垂直于AB,在MN的左侧有一沿AB方向场强大小为E1=5.0×105 V/m的匀强电场,在MN的右侧有一沿MN方向场强大小为E2=1.0×107 V/m的匀强电场。质量m2=4.0×10-2 kg的不带电金属小球静置于C点,电量为q=+2.0×10-6 C、质量为m1=1.0×10-2 kg的小球Q自A点静止释放(P、Q两金属球的大小完全相同)。已知AB=0.5 m,BC=1.20 m,cos10°=0.985,=π,简谐振动的周期公式为T=2π,式中m为振子的质量,k是回复力与位移大小的比值且为常数。试求P、Q两球在距A点多远处第二次相碰(不计碰撞时机械能损失和电荷间的相互作用力,结果取三位有效数字)。
摄制组在某大楼边拍摄武打片,要求特技演员从地面飞到屋顶.为此导演在某房顶离地H=8m处架设了轮轴,如图所示,轮和轴的直径之比为,特技演员的质量m=60kg,若轨道车从图中A前进s=6m到B处时速度为v=5m/s,则钢丝在这一过程中对演员做的功为多少?(人和车可视为质点,轮轴的质量不计,轮轴的大小相对于H可忽略,g取10m/s2.)
汽车的质量为2000kg,汽车发动机的额定功率为80kW,它在平直的公路上行驶时所受的阻力是4000N,试求:
⑴汽车保持额定功率从静止启动后达到的最大速度是多少?
⑵若汽车以2m/s2的加速度做匀加速直线运动,可维持多长时间?
⑶若汽车达到最大速度后,突然阻力变为原来的两倍,将做什么运动?
某兴趣小组对一辆自制小遥控车的性能进行研究。他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v-t图象,如图所示(除2s—10s时间段内的图象为曲线外,其余时间段图象均为直线)。已知小车运动的过程中,2s—14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行。小车的质量为1kg,可认为在整个过程中小车所受到的阻力大小不变。求:
⑴小车所受到的阻力大小;
⑵小车匀速行驶阶段的功率;
⑶小车在加速运动过程中位移的大小。
如图,质量都为m的A、B两环用细线相连后分别套在水平光滑细杆OP和竖直光滑细杆OQ上,线长L=0.4m,将线拉直后使A和B在同一高度上都由静止释放,当运动到使细线与水平面成30°角时,A和B的速度分别为vA和vB,求vA和vB的大小。(取g=10m/s2)
质量为5×103 kg的汽车在t=0时刻速度v0=10m/s,随后以P=6×104 W的额定功率沿平直公路继续前进,经72s达到最大速度,设汽车受恒定阻力,其大小为2.5×103N。
求:(1)汽车的最大速度vm;(2)汽车在72s内经过的路程s。
如图甲,在水平地面上固定一倾角为θ的光滑绝缘斜面,斜面处于电场强度大小为E、方向沿斜面向下的匀强电场中。一劲度系数为k的绝缘轻质弹簧的一端固定在斜面底端,整根弹簧处于自然状态。一质量为m、带电量为q(q>0)的滑块从距离弹簧上端为s0处静止释放,滑块在运动过程中电量保持不变,设滑块与弹簧接触过程没有机械能损失,弹簧始终处在弹性限度内,重力加速度大小为g。
(1)求滑块从静止释放到与弹簧上端接触瞬间所经历的时间t1
(2)若滑块在沿斜面向下运动的整个过程中最大速度大小为vm,求滑块从静止释放到速度大小为vm过程中弹簧的弹力所做的功W;
(3)从滑块静止释放瞬间开始计时,请在乙图中画出滑块在沿斜面向下运动的整个过程中速度与时间关系v-t图象。图中横坐标轴上的t1、t2及t3分别表示滑块第一次与弹簧上端接触、第一次速度达到最大值及第一次速度减为零的时刻,纵坐标轴上的v1为滑块在t1时刻的速度大小,vm是题中所指的物理量。(本小题不要求写出计算过程)
如下左图是过山车的实物图,右图为过山车的模型图.在模型图中半径分别为R1=2.0m和R2=8.0m的两个光滑圆形轨道,固定在倾角为=37°斜轨道面上的Q、Z两点,且两圆形轨道的最高点A、B均与P点平齐,圆形轨道与斜轨道之间圆滑连接.为使小车从P点以一定的初速度沿斜面向下运动能过A、B两点,小车在P点的速度满足什么条件.(小车可视作质点,已知斜轨道面与小车间的动摩擦因数为μ=,g=10m/s2,sin37°=0.6,cos37°=0.8.)
在大风的情况下,一小球自A点竖直向上抛出,其运动的轨迹如图11所示(小球的运动可看作竖直方向的竖直上抛运动和水平方向的初速为零的匀加速直线运动的合运动)。小球运动的轨迹上A、B两点在同一水平线上,M点为轨迹的最高点。若风力的大小恒定、方向水平向右,小球抛出时的动能为4J,在M点时它的动能为2J,不计其他的阻力。求:
(1)小球的水平位移S1与S2的比值。
(2)小球所受风力F与重力G的比值。(结果可用根式表示)
(3)小球落回到B点时的动能EKB-
如图所示,在倾角为θ的光滑斜面上,有一长为l的细线,细线的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O点到斜面底边的距离soc=L,求:
(1)小球通过最高点A时的速度vA.
(2)小球通过最低点B时,细线对小球的拉力.
(3)小球运动到A点或B点时细线断裂,小球滑落到斜面底边时到C点的距离若相等,则l和L应满足什么关系?
过山车是游乐场中常见的设施。下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的三个圆形轨道组成,B、C、D分别是三个圆形轨道的最低点,B、C间距与C、D间距相等,半径R1=2.0m、R2=1.4m。一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v0=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m。小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的。假设水平轨道足够长,圆形轨道间不相互重叠。重力加速度g=10m/s2,计算结果保留小数点后一位数字。试求
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二圆形轨道,B、C间距应是多少;
(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径应满足的条件;小球最终停留点与起点A的距离。
倾斜雪道的长为25 m,顶端高为15 m,θ=370,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。一滑雪运动员在倾斜雪道的顶端以水平速度v0=8 m/s飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离(取g=10 m/s2)
如图所示, 三个台阶每个台阶高 h="0.225" 米,宽s=0.3米。小球在平台AB上以初速度v0水平向右滑出,要使小球正好落在第2个平台CD上,不计空气阻力,求初速v0范围。某同学计算如下:(g取10m/s2)
根据平抛规律 2h=gt2/2 ;
到达D点小球的初速 vD =2s/t=2×0.3/0.3=2m/s
到达C点小球的初速 vC =s/t=0.3/0.3=1m/s
所以落到台阶CD小球的初速范围是 1m/s < v0 < 2m/s
以上求解过程是否有问题,若有,指出问题所在,并给出正确的解答。
试题篮
()