某宇航员在飞船发射前测得自身连同宇航服等装备共重840N,在火箭发射阶段,发现当飞船随火箭以的加速度匀加速竖直上升到某位置时(其中g为地面处的重力加速度),其身下体重测试仪的示数为1220N。设地球半径R=6400km,地球表面重力加速度g=10m/s2(求解过程中可能用到=1.03,=1.02)。问:
(1)该位置处的重力加速度g′是地面处重力加速度g的多少倍?
(2)该位置距地球表面的高度h为多大?
有一艘宇宙飞船,在离地高h=360km的圆轨道上做匀速圆周运动。若地球的半径为R=6400km,地面重力加速度g=10m/s2,求(结果取三位有效数字,):
(1)飞船正常运行时的速度V的表达式及数值;
(2)飞船在圆轨道上运行的周期T。
最富有现实意义的物理,莫过于在自己生死攸关时,能帮你作出科学判断,助你化险为夷的物理。
“一个周末的傍晚,你爸爸终于有了时间,带着你们全家驱车以速度V0行驶来到你向往已久的乡野。你们正尽情地享受着乡野迷人的气息,突然你眼前一亮,车灯照亮了一片水波!你大声惊呼地闭上了眼……” 同学们不用紧张,这只是编的一个故事。
假设车灯照亮的是一条垂直于汽车行驶方向小河沟,车的周围是一片平地。你爸爸选择立即刹车(设刹车时汽车做匀减速直线运动),使车恰好停在河边而逃过一劫;或选择立即拐弯(设拐弯时汽车做匀速圆周运动),是否能幸免一难?(可借助V0、g、μ等物理量表达结论)
如图所示,在质量为M=0.99kg的小车上,固定着一个质量为m=10g、电阻R=1W的矩形单匝线圈MNPQ,其中MN边水平,NP边竖直,高度l=0.05m。小车载着线圈在光滑水平面上一起以v0=10m/s的速度做匀速运动,随后进入一水平有界匀强磁场(磁场宽度大于小车长度),完全穿出磁场时小车速度v1=2m/s。磁场方向与线圈平面垂直并指向纸内、磁感应强度大小B=1.0T。已知线圈与小车之间绝缘,小车长度与线圈MN边长度相同。求:
(1)小车刚进入磁场时线圈中感应电流I的大小和方向;
(2)小车通过磁场的过程中线圈电阻的发热量Q;
(3)小车进入磁场过程中线圈克服安培力所做的功W。
两个带电量均为+q小球,质量均为m,固定在轻质绝缘直角框架OAB(框架的直角边长均为L)的两个端点A、B上,另一端点用光滑铰链固定在O点,整个装置可以绕垂直于纸面的水平轴在竖直平面内自由转动。
(1)若施加竖直向上的匀强电场E1,使框架OA边水平、OB边竖直并保持静止状态,则电场强度E1多大?
(2)若改变匀强电场的大小和方向(电场仍与框架面平行),为使框架的OA边水平、OB边竖直(B在O的正下方),则所需施加的匀强电场的场强E2至少多大?方向如何?
(3)若框架处在匀强电场E1中OA边水平、OB边竖直并保持静止状态时,对小球B施加一水平向右的恒力F,则小球B在何处时速度最大?最大值是多少?
一个“┌”型细玻璃管A、B两端开口,水平段内有一段长为5cm的水银柱,初始时长度数据如图所示。现将玻璃管B端封闭,然后将下端A插入大水银槽中,整个过程温度不变,稳定后竖直管内水银面比大水银槽面低5cm,已知大气压强为75cmHg。求:
(1)稳定后玻璃管B端水平段内被封闭气体的压强为多少?
(2)竖直管A端插入水银槽的深度h。
某研究性学习小组用加速度传感器探究物体从静止开始做直线运动的规律,得到了质量为1.0kg的物体运动的加速度随时间变化的关系图线,如图所示。
(1)请简要说明物体的运动情况;
(2)估算物体在t=10.0s时的速度大小;
(3)估算从t=10.0s到t=12.0s的时间内合外力对物体做的功。
(共18分)如图所示,一个质量为m,带电量为+q的微粒,从a点以大小为v0的初速度竖直向上射入水平方向的匀强电场中。微粒通过最高点b时的速度大小为2v0方向水平向右。求:
(1)该匀强电场的场强大小E;
(2)a、b两点间的电势差Uab;
(3)该微粒从a点到b点过程中速率的最小值vmin。
(共18分)如图所示,在一光滑的长直轨道上,放着若干完全相同的小木块,每个小木块的质量均为m,且体积足够小均能够看成质点,其编号依次为0、1、2、……n……,相邻各木块之间的距离分别记作:。在所有木块都静止的初始条件下,有一个沿轨道方向水平向右的恒力F持续作用在0号小木块上,使其与后面的木块连接发生碰撞,假如所有碰撞都是完全非弹性的(碰后合为一体共速运动)。求:
(1)在0号木块与1号木块碰撞后瞬间,其共同速度的表达式;
(2)若F=10牛,米,那么在2号木块被碰撞后的瞬间,系统的总动能为多少?
(3)在F=10牛,米的前提下,为了保持正在运动的物块系统在每次碰撞之前的瞬间其总动能都为一个恒定的数值,那么我们应该设计第号和第n号木块之间距离为多少米?
(共16分)如图所示,MN和PQ为竖直方向的两平行长直金属导轨,间距l为0.40m,电阻不计. 导轨所在平面与磁感庆强度B=5.0T的匀强磁场垂直。质量m=6.0×10-2kg、电阻r=0.5Ω的金属杆ab始终垂直于导轨,并与其保持光滑接触。导轨两端分别接有阻值均为3.0Ω的电阻R1和R2。重力加速度取10m/s2,且导轨足够长,若使金属杆ab从静止开始下滑,求:
(1)杆下滑的最大速率vm;
(2)稳定后整个电路耗电的总功率P;
(3)杆下滑速度稳定之后电阻R2两端的电压U.
如图所示,电阻,小灯泡上标有“3V,1.5W",电源内阻,滑动变阻器的最大阻值为(大小未知),当触头滑动到最上端时;’安培表的读数为l A,小灯泡恰好正常发光,求:
(1)滑动变阻器的最大阻值
(2)当触头滑动到最下端时,求电源的总功率及输出功率。
环保汽车将为2008年奥运会场馆服务。某辆以蓄电池为驱动能源的环保汽车,总质量。当它在水平路面上以v=36km/h的速度匀速行驶时,驱动电机的输入电流I=50A,电压U=300V。在此行驶状态下
(1)求驱动电机的输入功率;
(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P机,求汽车所受阻力与车重的比值(g取10m/s2);
(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积。
已知太阳辐射的总功率,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%。
如图所示,电阻忽略不计的、两根平行的光滑金属导轨竖直放置,其上端接一阻值R=3Ω的定值电阻.在水平虚线L1、L2间有一与导轨所在平面垂直的匀强磁场B,磁场区域的高度为d=0.5m.导体杆a的质量ma=0.2kg、电阻Ra=6Ω;导体杆b的质量mb=0.6kg、电阻Rb=3Ω,它们分别从图中M、N处同时由静止开始在导轨上无摩擦向下滑动,且都能匀速穿过磁场区域,当a杆刚穿出磁场时b杆正好进入磁场.设重力加速度为g=10m/s2.(不计a、b之间的作用)求:
(1)在整个过程中,a、b两杆完全穿出磁场区克服安培力分
别做的功;
(2)设a、b杆在磁场中的运动速率分别为,则
的值为多少?
(3)M点和N点距水平虚线L1的高度.
如图所示,在xoy平面内,第Ⅲ象限内的直线OM是电场与磁场的边界,OM与负x轴成45°角.在x<0且OM的左侧空间存在着负x方向的匀强电场E,场强大小为0.32N/C;在y<0且OM的右侧空间存在着垂直纸面向里的匀强磁场B,磁感应强度大小为0.1T.一不计重力的带负电的微粒,从坐标原点O沿y轴负方向以v0=2×103m/s的初速度进入磁场,最终离开电磁场区域.已知微粒的电荷量q=5×10-18C,质量m=1×10-24kg,求:
(1)带电微粒第一次经过磁场边界的位置坐标;
(2)带电微粒在磁场区域运动的总时间;
(3)带电微粒最终离开电、磁场区域的位置坐标.
试题篮
()