如图9-3-27所示,两足够长且间距L=1 m的光滑平行导轨固定于竖直平面内,导轨的下端连接着一个阻值R=1 Ω的电阻.质量为m=0.6 kg的光滑金属棒MN靠在导轨上,可沿导轨滑动且与导轨接触良好,整个导轨处在空间足够大的垂直于平面向里的匀强磁场中,磁感应强度B=1 T.现用内阻R=1 Ω的电动机牵引金属棒MN,使其从静止开始运动直到获得稳定速度,若上述过程中电流表和电压表的示数始终保持1 A和8 V不变(金属棒和导轨的电阻不计,重力加速度g取10 m/s2),求:
图9-3-27
(1)电动机的输出功率;
(2)金属棒获得的稳定速度的大小;
(3)若金属棒从静止开始运动到获得稳定速度的过程中,棒上升的高度为1 m,该过程中电阻R上产生的电热为0.7 J,求此过程经历的时间.
均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感应强度为B的水平匀强磁场上方h处,如图12-3-22所示.线框由静止自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界面平行.当cd边刚进入磁场时,
图12-3-22
(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.
如图所示,半径为r的金属圆环,绕通过某直径的轴OO′以角速度ω匀速转动,匀强磁场的磁感应强度为B,从金属环的平面与磁场方向重合时开始计时,求在转过30°角的过程中,环中产生的感应电动势是多大?
长为L的金属棒ab,绕b端在垂直于匀强磁场的平面内以角速度ω匀速转动,磁感应强度为B,如图所示.求ab两端的电势差.
如图9-3-28甲所示,足够长的金属导轨MN和PQ与一阻值为R的电阻相连,平行地放在水平桌面上,质量为m的金属杆可以无摩擦地沿导轨运动.导轨与ab杆的电阻不计,导轨宽度为L,磁感应强度为B的匀强磁场垂直穿过整个导轨平面.现给金属杆ab一个初速度v0,使ab杆向右滑行.回答下列问题:
图9-3-28
(1)简述金属杆ab的运动状态,并在图乙中大致作出金属杆的v-t图象;
(2)求出回路的最大电流值Im并指出电流流向;
(3)当滑行过程中金属杆ab的速度变为v时,求杆ab的加速度a;
(4)电阻R上产生的最大热量Q.
如图9-3-22所示,宽0.5 m的导轨上放一电阻R0=0.1 Ω的导体棒,并用水平线通过定滑轮吊着质量M=0.2 kg的重物,轨道左端连接的电阻R=0.4 Ω,图中的l=0.8 m.竖直向上的匀强磁场的磁感应强度B=0.5 T,并且以在变化.水平导轨电阻不计,且不计摩擦阻力.求至少经过多长时间才能吊起重物?
图9-3-22
如图9-3-14所示,在磁感应强度为B的水平方向的匀强磁场中竖直放置两平行导轨,磁场方向与导轨所在平面垂直.导轨上端跨接一阻值为R的电阻(导轨电阻不计).两金属棒a和b的电阻均为R,质量分别为ma=2×10-2 kg和mb=1×10-2 kg,它们与导轨相连,并可沿导轨无摩擦滑动.闭合开关S,先固定b,用一恒力F向上拉a,稳定后a以v1="10" m/s的速度匀速运动,此时再释放b,b恰好保持静止,设导轨足够长,取g="10" m/s2.
图9-3-14
(1)求拉力F的大小;
(2)若将金属棒a固定,让金属棒b自由滑下(开关仍闭合),求b滑行的最大速度v2.
有一面积为100 cm2的金属环,电阻为0.1 Ω,环中磁场变化规律如下图所示,且磁场方向垂直于环面向里.在t1到t2这段时间内,环中流过的电荷量是多少?
如图所示,平行水平面放置的导轨上连有电阻R,处于垂直轨道平面的匀强磁场中.今从静止起用力拉金属棒ab,若拉力恒定,经过时间t1后ab速度为v,加速度为a1,最终速度可达2v;若改用功率恒定的拉力作用,经过时间t2后ab的速度也为v,加速度为a2,最终速度也可达2v.求a1∶a2的值.(导轨光滑,摩擦不计)
如图所示,倾斜的金属导轨和水平的金属导轨接在一起,各自的两条平行轨道之间距离都为d,倾斜导轨与水平面间的夹角为30°,在倾斜导轨的区域有垂直于轨道平面斜向上的匀强磁场,在水平导轨的区域有竖直向上的匀强磁场,磁感应强度大小都为B,倾斜导轨上放有金属棒a,在紧靠两导轨连接处的水平导轨上放有金属棒b,a、b都垂直于各自的轨道,质量均为m,a、b与水平的金属导轨间的动摩擦因数是μ,倾斜的金属导轨光滑。倾斜轨道间接有电阻R,a、b的电阻值都是R,其余电阻不计。
开始时a固定,b静止,且a距水平导轨平面的高度为h,现释放a,同时给a一个平行于倾斜导轨向下的初速度,a就在倾斜导轨上做匀速运动,经过两导轨的连接处时速度大小不变,在此过程中b仍然静止,滑上水平导轨后即与b金属棒粘在一起在水平导轨上运动距离L后静止。求:
(1)在倾斜导轨上匀速运动的速度v0大小。
(2)a在倾斜导轨上运动的过程中,电阻R上产生的热量Q1是多大?
(3)a、b一起在水平导轨上运动的过程中,电阻R上产生的热量Q2是多大?
如下图所示,一个“U”形金属导轨PMNQ,其质量为M=2 kg,放在光滑绝缘的水平面上,处于匀强磁场中,另有一根质量为m=0.6 kg的金属棒CD与MN边平行放置在导轨上,CD边左边靠着固定的卡口a、b,卡口能阻止CD棒向左运动。匀强磁场以图中虚线为界,左侧的磁场B1方向竖直向上(区域无限大),右侧的磁场B2方向水平向左,磁感应强度的大小都是0.80 T,如图所示。导轨MN段长为0.50 m,电阻为0.40 Ω,金属棒CD的电阻是0.40 Ω,其余电阻不计,CD与导轨间的动摩擦因数为0.20。若在导轨上作用一个方向水平向左,大小为2.4 N的恒力,设导轨足够长,取g=10 m/s2。
求:导轨运动过程中的最大加速度和最大速度。
水平放置足够长的光滑平行金属导轨MN和PQ相距L=0.3 m,接在MP之间的定值电阻R0=0.9 Ω;质量M=80 g、电阻R=0.3 Ω的金属棒ab静止在金属导轨上,ac、cd和ab三段的长度相同、电阻值相等,金属棒与导轨接触良好;导轨和连线的电阻不计,整个装置处在垂直于轨道平面向下的匀强磁场中,磁感应强度B=1 T,俯视如图。现有一质量为m=20 g的黏性橡皮泥,以向右的水平速度v0=10 m/s击中cd段的中央,并在极短时间内粘在棒上一起运动。
(1)橡皮泥刚好与金属棒具有共同速度时,求金属棒两端的电势差Uab;
(2)金属棒在向右滑动的过程中,当加速度大于等于最大值的1/2时,求电阻R0的电功率P。
如图所示,空间某区域内存在水平方向的匀强磁场,在磁场区域内有两根相距L="0.8" m的平行光滑金属导轨PQ、MN固定在竖直平面内,P、M间连接有R0="1" Ω的电阻,Q、N间连接着两块水平放置的平行金属板a、b,两板相距d="0.2" m。一根电阻r="3" Ω的细导体棒AB可以沿导轨平面向右运动,导体棒与导轨接触良好,不计导轨和导线的电阻。现使导体棒AB以速率v向右匀速运动,在平行金属板a、b之间有一个带电液滴恰好以速率v在竖直平面内做匀速圆周运动,设导轨足够长,取g="10" m/s2。
(1)试确定液滴带何种电荷,并说明理由。
(2)要使液滴在金属板间做匀速圆周运动而不与两板相碰,求导体棒AB运动速率v的取值范围。
(3)对于确定的速率v,带电液滴做匀速圆周运动,求其从某点开始发生的位移大小等于圆周运动的直径所需的时间。
如图所示,两条光滑的绝缘导轨,导轨的水平部分与圆弧部分平滑连接,两导轨间距为L,导轨的水平部分有n段相同的匀强磁场区域(图中的虚线范围),磁场方向竖直向上,磁场的磁感应强度为B,磁场的宽度为s,相邻磁场区域的间距也为s,s大于L,磁场左右两边界均与导轨垂直。现有一质量为m,电阻为r,边长为L的正方形金属框,由圆弧导轨上某高度处静止释放,金属框滑上水平导轨,在水平导轨上滑行一段时间进入磁场区域,最终线框恰好完全通过n段磁场区域。地球表面处的重力加速度为g,感应电流的磁场可以忽略不计,求:
(1)刚开始下滑时,金属框重心离水平导轨所在平面的高度。
(2)整个过程中金属框内产生的电热。
(3)金属框完全进入第k(k<n=段磁场区域前的时刻,金属框中的电功率。
如图所示,光滑的平行导轨MN、PQ水平放置,相距d="1.0" m,电阻不计,导轨与半径为R="1" m的半圆形的光滑绝缘体在N、Q处平滑连接。整个装置处于方向竖直向下的磁感应强度为B=4×10-2 T的匀强磁场中。导体棒ab、cd质量均为m="1" kg,长度L="1.2" m,电阻均为r="1" Ω,垂直于导轨方向放置,ab、cd相距x="1" m。现给ab一个水平向右的瞬时冲量I="10" N·s,ab、cd均开始运动。当ab运动到cd原来的位置时,cd恰好获得最大速度且刚好离开水平导轨。求cd到达半圆形绝缘体顶端时对绝缘体的压力及整个过程中导体棒所增加的内能。(g取10 m/s2)
试题篮
()