(10分)果蝇是遗传学研究常用的生物材料,请回答下列有关果蝇遗传试验的问题:
(1)已知果蝇黄身和黑身为一对相对性状,控制该性状的基因位于常染色体上,一对体色为黑身的果蝇交配,后代有多只黑身果蝇和一只黄身雄果蝇,分析认为体色异常原因有两种:一是基因突变(只考虑一个基因)的结果,二是隐性基因携带者之间交配的结果,请设计杂交实验并预测试验结果。
试验方案:将这只黄身雄果蝇与________交配,获得若干后代,若后代________,则为原因一;若后代______________,则为原因二。
(2)科学家布里吉斯发现白眼雌果蝇(XbXb)和红眼雄果蝇(XBY)杂交的子一代出现了一个白眼雌果蝇,大量观察发现,上述杂交中,2000—3000只红眼雌果蝇中会出现一只白眼雌果蝇,同样在2000—3000只白眼雄果蝇中会出现一只红眼雄果蝇。对于果蝇来说,染色体与性别关系如下表,该白眼雌果蝇的出现可能为基因突变也可能为染色体变异,请设计简单杂交实验确定是哪一种原因引起的。
XXY |
XO |
XXX |
YO |
雌性可育 |
雄性不可育 |
死亡 |
死亡 |
实验方案: ,统计F1的表现型情况;
结果预测:若____________,则为基因突变;若____________,则为染色体变异。
科研人员获得一种叶绿素b完全缺失的某植物突变体,该突变体对强光照环境的适应能力更强(如图)。该突变体植物叶片发育过程中,净光合速率及相关指标的变化见下表(“-”表示未测数据)。请回答下列有关问题。
叶片 |
发育时期 |
叶面积(最大面积/%) |
气孔相对开放度/% |
||
A |
新叶展开前 |
19 |
- |
- |
-2.8 |
B |
新叶展开中 |
87 |
1.1 |
55 |
1.6 |
C |
新叶展开完成 |
100 |
2.9 |
81 |
2.7 |
D |
新叶已成熟 |
100 |
11.1 |
100 |
5.8 |
(1)提取该植物突变体的光合色素,应在研磨叶片时加入________,以防止色素被破坏。用纸层析法分离该突变体叶片的光合色素,缺失的色素带应位于滤纸条的________。
(2)该突变体和野生型植物的O2释放速率与光照强度的关系如上图所示。当光照强度为n时,与野生型相比,突变体单位面积叶片中叶绿体的氧气产生速率________。当光照强度为m时,测得突变体叶片气孔开放程度比野生型更大,据此推测,突变体固定CO2形成________的速率更快,对光反应产生的________消耗也更快,进而提高了光合放氧速率。
(3)表格中的四组叶片,B的净光合速率较低,推测原因可能是:
①叶绿素含量低,导致光能吸收不足;
②__________________________,导致________________________。
(4)将A、D分别置于光温恒定的密闭容器中,一段时间后,A的叶肉细胞中,将开始积累________;D的叶肉细胞中,ATP含量将________。
(5)与C相比,D的叶肉细胞的叶绿体中,数量明显增多的结构是________。
遗传性乳光牙患者由于牙本质发育不良导致牙釉质易碎裂,牙齿磨损迅速,乳牙、恒牙均发病,4~5岁乳牙就可以磨损到牙槽,需全拔装假牙,给病人带来终身痛苦。通过对该病基因的遗传定位检查,发现原正常基因第45位原决定谷氨酰胺的一对碱基发生改变,引起该基因编码的蛋白质合成终止导致患病。已知谷氨酰胺的密码子(CAA、CAG),终止密码(UAA、UAG、UGA)。请分析回答:
(1)正常基因中发生突变的碱基对是 。
(2)与正常基因控制合成的蛋白质相比,乳光牙致病基因控制合成的蛋白质相对分子质量 ,进而使该蛋白质的功能丧失。
(3)现有一乳光牙遗传病家族系谱图(已知控制乳光牙基因用A、a表示):
①乳光牙是致病基因位于 染色体上的 性遗传病。
②产生乳光牙的根本原因是 ,该家系中③号个体的致病基因是通过 获得的。
③若3号和一正常男性结婚,则生一个正常男孩的可能性是 。
下图表示某一观花植物花色形成的遗传机理,其中字母表示控制对应过程所需的基因,且各等位基因表现出完全显性,非等位基因间独立遗传。若紫色色素与红色色素同时存在时,则表现为紫红色。请回答:
(1)该植物花色的遗传遵循 定律。
(2)若同时考虑三对等位基因,则能产生含红色色素的植株基因型有 种,紫花的植株基因型是 。
(3)现有纯合紫花的植株与纯合红花的植株杂交,所得F1的表现型为 。F1自交,则F2中白花的植株所占的比例是 ,紫红花的植株所占比例是 。
(4)已知该植物为二倍体,某植株某性状出现了可遗传的新表现型,请设计一个简单实验来鉴定这个新表现型的出现是由于基因突变还是染色体组加倍所致?(写出实验思路) 。
(5)某花农只有纯合紫花的植株和纯合红花的植株,希望能在最短时间内培养出可稳定遗传的白花植株,可采用的育种方法是 ,该育种方法依据的主要原理是 。
玉米(2n=20)是雌雄同株异花植物,有宽叶和窄叶,抗病和不抗病等相对性状。
I.下图为利用玉米的幼苗芽尖细胞进行实验的流程示意图。请分析并回答:
(1)基因重组发生在图中 (填编号)过程,图中秋水仙素的作用是 。利用幼苗2培育出植株B育种过程的最大优点是 。
(2)植株A的体细胞内最多时有 个染色体组,过程③中能够在显微镜下看到染色单体的时期是 。植株C属于单倍体是因为 。
II.已知玉米宽叶(A)对窄叶(a)为显性,在苗期便能识别出来,并且杂交种(Aa)所结果实与纯合品种相比表现为高产。某农场在培育杂交种时,将纯种宽叶玉米和纯种窄叶玉米进行了间行种植,但由于错过了人工授粉的时机,结果导致大面积自然授粉。
(3)按照上述栽种方式,F1植株的基因型有 种。
(4)如果用上述自然授粉收获的种子用于第二年种植,预计收成将比单独种植杂交种减产8%,因此到了收获季节,应收集 (宽叶、窄叶)植株的种子,第二年播种后,在幼苗期选择 (宽叶、窄叶)植株栽种,才能保证产量不下降。
(5)玉米花叶病由花叶病毒引起,苗期出现黄绿相间条纹状叶。已知抗花叶病(b)为隐性。现有纯种宽叶不抗病与纯种窄叶抗病两品种玉米,要获得高产且抗花叶病的品种,可用两纯合亲本进行 ,得到F1,再用F1进行 ,即能在较短时间内获得所需品种植株,其基因型是 。
某二倍体植物(2n=14)开两性花,可自花传粉。研究者发现有雄性不育植株(即雄蕊发育异常不能产生有功能的花粉,但雌蕊发育正常能接受正常花粉而受精结实),欲选育并用于杂交育种。请回答下列问题:
(1)雄性不育与可育是一对相对性状。将雄性不育植株与可育植株杂交,F1代均可育,F1自交得F2,统计其性状,结果如右表,说明控制这对相对性状的基因遗传遵循 定律。
(2)在杂交育种中,雄性不育植株只能作为亲本中的 (父本/母本),其应用优势是不必进行 操作。
(3)为在开花前即可区分雄性不育植株和可育植株,育种工作者培育出一个三体新品种,其体细胞中增加一条带有易位片段的染色体。相应基因与染色体的关系如右下图(基因M控制可育,m控制雄性不育;基因R控制种子为茶褐色,r控制黄色)。
①三体新品种的培育利用了 原理。
②带有易位片段的染色体不能参与联会,因而该三体新品种的细胞在减数分裂时可形成 个正常的四分体; (时期)联会的两条同源染色体彼此分离,分别移向细胞两极,而带有易位片段的染色体随机移向一极。故理论上,含有8条染色体的雄配子占全部雄配子的比例为 ,经研究发现这样的雄配子不能与雌配子结合。
③此品种植株自交,所结的黄色种子占70%且发育成的植株均为雄性不育,其余为茶褐色种子,发育成的植株可育。结果说明三体植株产生的含有8条染色体和含有7条染色体的可育雌配子的比例是 ,这可能与带有易位片段的染色体在减数分裂时的丢失有关。
④若欲利用此品种植株自交后代作为杂交育种的材料,可选择 色的种子留种。
某二倍体植物(2n=14)开两性花,可自花传粉。研究者发现有雄性不育植株(即雄蕊发育异常不能产生有功能的花粉,但雌蕊发育正常能接受正常花粉而受精结实)。请回答下列问题:
(1)雄性不育与可育是一对相对性状。将雄性不育植株与可育植株杂交,F1代均可育,F1自交得F2,统计其性状,结果如右表,说明控制这对相对性状的基因遗传遵循 ________________定律。
表 F2性状统计结果 |
||
编号 |
总株数 |
可育∶不育 |
1 |
35 |
27∶8 |
2 |
42 |
32∶10 |
3 |
36 |
27∶9 |
4 |
43 |
33∶10 |
5 |
46 |
35∶11 |
(2)在杂交育种中,雄性不育植株只能作为亲本中的 (父本/母本),其应用优点是不必进行 操作。
(3)为了在开花前即可区分雄性不育植株和可育植株,育种工作者培育出一个三体新品种,其体细胞中增加一条带有易位片段的染色体。相应基因与染色体的关系如右图(基因M控制可育,m控制雄性不育;基因R控制种子为茶褐色,r控制黄色)。
①三体新品种的培育利用了 原理。
②带有易位片段的染色体不能参与联会,因而该三体新品种的细胞在减数分裂时可形成 个正常的四分体; (时期)联会的两条同源染色体彼此分离,分别移向细胞两极,而带有易位片段的染色体随机移向一极。故理论上,含有8条染色体的雄配子占全部雄配子的比例为 ,经研究发现这样的雄配子不能与雌配子结合。
③此品种植株自交,所结的黄色种子占70%且发育成的植株均为雄性不育,其余为茶褐色种子,发育成的植株可育。结果说明三体植株产生的含有8条染色体和含有7条染色体的可育雌配子的比例是 ,这可能与带有易位片段的染色体在减数分裂时的丢失有关。
现有两纯种小麦,一纯种小麦性状是高秆(D)、抗锈病(T);另一纯种小麦的性状是矮秆(d)、易染锈病(t)(两对基因独立遗传)。育种专家提出了如图所示育种方法以获得小麦新品种,请据图分析回答:
(1)与正常植株相比,单倍体植株长得弱小,而且高度不育,但是,利用单倍体植株培育新品种却能明显________________________。
(2)图中(三)过程采用的方法称为___________________________;图中(四)过程最常用的化学药剂是___________________,该物质作用于正在分裂的细胞,引起细胞内染色体数目加倍的原因是__________________________________________。
(3)图中标号④基因组成分别为_________。用这种方法培育得到的植株中,符合人们要求的矮秆抗锈病植株所占的比例为_________。
以下各图分别表示几种不同的育种方法。
(1)A图所示过程是一种克隆动物的新技术,新个体丙的性别决定于 亲本。
(2)在B图中,由物种P突变为物种P′,在指导蛋白质合成时,③处的氨基酸由物种P的 改变成了 。(缬氨酸GUC;谷氨酰胺CAG;天门冬氨酸GAC)
(3)C图所示的育种方法叫 ,小黑麦是八倍体,该方法最常用的做法是在1处 。
(4)D图所表示的育种方法叫 ,原理是 。若要在F2中选出最符合生产要求的新品种,最简便的方是 。
(5)E图中过程3常用的方法是 ,与D方法相比,E方法的突出优点是 。
在哺乳动物体细胞核中,有的X染色体常浓缩成染色较深的染色质体,此即为巴氏小体。研究者普遍认为,巴氏小体的形成是与XIST基因的特异性表达有关, 大量的XIST顺式作用在其中一条X染色体上,引发了该条染色质的广泛甲基化,从 而导致异染色质的形成。请分析回答下列问题
(1)显微镜下观察巴氏小体时,需用 染色后制片。某些性染色体数目异常的细胞核具有不同数目的巴氏小体,如XXY有1个、XXX有2个、XXX有3个,而XO没有巴氏小体,由此推测X染色体浓缩成巴氏小体的生物学意义是维 持雌性个体与雄性个体的x染色体上 量相同。
(2)为探究胚胎发育早期X染色体上Xist基因的表达与x染色体失活的关系,科研 人员将某种雌鼠的胚胎干细胞(PGK细胞)中两条X染色体分别记为X1和 X2(如图1 ),通过基因工程方法将其中X2的Xist基因敲除,获得XT细胞。对PGK 细胞、XT细胞及由它们分化形成的细胞中E和e基因的表达量进行定童分析,实验结果如图2所示。
①由图2分析,火多数PGK和XT细胞中的X染色体 。PGK分化细胞中E基因和e基因表达量高于 80%的细胞数目接近相等,说明X染色体失活是 的。
②由图2分析,XT分化细胞中 染色体失活,实验结果表明 。
③PGK分化细胞的不同细胞中E、e基因表达的差异,是由于这些细胞的 不同。
(3)据上述实验推测,在胚胎发育过程中,雄性哺乳动物体细胞中Xist基因 (填“会”或“不会”)转录。一般情况下,红绿色盲基因携带者的表现型是 。
中国科学家屠呦呦获得2015诺贝尔生理学或医学奖的获奖理由是“有关疟疾新疗法的发现”——可以显著降低疟疾患者死亡率的青蒿素。青蒿素是治疗疟疾的重要药物。利用雌雄同株的野生型青蒿(二倍体,体细胞染色体数为18),通过传统育种和现代生物技术可培育高青蒿素含量的植株。请回答以下相关问题:
(1)假设野生型青蒿白青秆(A)对紫红秆(a)为显性,稀裂叶(B)对分裂叶(b)为显性,两对性状独立遗传,则野生型青蒿最多有_________种基因型;若F1代中白青秆、稀裂叶植株所占比例为3/8,则其杂交亲本的基因型组合为_________,该F1代中紫红秆、分裂叶植株所占比例为_____________。
(2)四倍体青蒿中青蒿素含量通常高于野生型青蒿,低温处理野生型青蒿正在有丝分裂的细胞会导致染色体不分离,从而获得四倍体细胞并发育成植株,推测低温处理导致细胞染色体不分离的原因是___________,四倍体青蒿与野生型青蒿杂交后代体细胞的染色体数为_________。
(3)从青蒿中分离了cyp基因(题31图为基因结构示意图),其编码的cyp酶参与青蒿素合成。①若该基因一条单链中(G+T)/(A+C)=2/3,则其互补链中(G+T)/(A+C)= _________。②若该基因经改造能在大肠杆菌中表达CYP酶,则改造后的cyp基因编码区无_________ (填字母)。③若cyp基因的一个碱基对被替换,使cyp酶的第50位氨基酸由谷氨酸变成缬氨酸,则该基因突变发生的区段是_________ (填字母)。
下图是利用某二倍体植物作为实验材料所做的一些实验示意图。请分析回答:
(1)通过途径 1、2获得植株B和植株C的过程所采用的生物技术是___________,所利用的生物学原理是________________________。
(2)途径1、2、3中最能保持植株A性状的途径是________________________。
(3)如果植株A的基因型为AaBb(两对基因独立遗传),植株D与植株C的表现型相同的概率为________。
(4)若利用途径2培养转基因抗虫植株C,种植该转基因植物时,为避免它所携带的抗虫基因通过花粉传递给近缘物种,造成“基因污染”,则应该把抗虫基因导入到叶肉细胞的________DNA中。
(5)该二倍体植物的高茎和矮茎为一对相对性状(由核基因控制),现有通过途径1获得的植株B幼苗若干(其中既有高茎,又有矮茎),请设计实验程序,确定高茎与矮茎这对相对性状的显隐关系,实验程序可用图解表示并加以说明。
果蝇为生物实验常用材料,进一步研究发现果蝇的性别与染色体组成有关,如下表,其中XXY个体能够产生正常配子。
染色体组成 |
XY] |
XYY |
XX |
XXY |
XXX |
YY |
性别 |
雄性 |
雌性 |
不发育 |
果蝇的长翅(A)对残翅(a)为显性,基因位于常染色体上;红眼(R)对白眼(r)是显性,基因位于X染色体Ⅱ区域中(如右图,Ⅱ、Ⅲ为非同源区段),该区域缺失的X染色体记为X-,其中XX-为可育雌果蝇,X-Y因缺少相应基因而死亡。用长翅红眼雄果蝇(AaXRY)与长翅白眼雌果蝇(AaXrXr)杂交得到F1,发现残翅中有一只例外白眼雌果蝇(记为W)。现将W与正常红眼雄果蝇杂交产生F2:
(1)根据F2性状判断产生W的原因
①若子代 ,则是由于亲代配子基因突变所致;
②若子代 ,则是由X染色体Ⅱ区段缺失所致;
③若子代 ,则是由性染色体数目变异所致。
(2)如果上述结论③成立,则W的基因型是 ,F2中的果蝇有 种基因型。
(3)若果蝇刚毛和截毛这对相对性状由X和Y染色体上一对等位基因控制(位于同源区段Ⅰ上),刚毛(B)对截毛(b)为显性;控制果蝇的红眼和白眼性状的基因只位于X染色体Ⅱ区段上,果蝇的性别常常需要通过眼色来识别。若只考虑刚毛和截毛这对性状的遗传,果蝇种群中雄果蝇的基因型除了有XBYB和XBYb外,还有XbYB、XbYb。种群中有各种性状的雄果蝇,现有一只红眼刚毛雄果蝇(参考基因型为XRBYB),要通过一次杂交实验判断它的基因型,应选择表现型为 雌果蝇与该只果蝇交配,然后观察子代的性状表现。
①如果子代果蝇均为刚毛,则该雄果蝇基因型是XBRYB;
②如果子代红眼果蝇为刚毛,白眼果蝇为截毛。则该雄果蝇基因型为__________.
③如果子代 ,则雄果蝇基基因型为XbRYB。
农业上常用的育种方法如下:
a.甲品种×乙品种→F1→F1自交→人工选择→自交→F2→人工选择→自交……→性状稳定的新品种
b.甲品种×乙品种→F1→F1花粉离体培养得到许多小苗→秋水仙素处理→若干植株→F2→人工选择→性状稳定的新品种
c.正常幼苗→秋水仙素处理→人工选择→性状稳定的新品种
d.种子搭载人造卫星到太空→返回地面种植→性状稳定的新品种
e.获取甲种生物的某基因→通过某种载体将该基因导入乙种生物→性状稳定的新品种
(1)a方法属于常规育种,一般从F2开始选种,这是因为_________________。选中的个体还需要经过若干代的自交、鉴别,直到不发生性状分离为止,这是因为新品种一定要是________。
(2)b方法与a方法相比,突出的优点是_____________。
(3)通过c途径获得的新品种应属于________体,它们往往表现出__________等特点;育种中使用秋水仙素的主要作用是___________________。
(4)d方法中搭载的种子应当是________(填“干燥的”“萌动的”或“休眠的”);种子返回地面种植后,其变异_________(填“全是对人类有益的”“不全是对人类有益的”或“全是对人类有害的”),所以要对其进行_______。
(5)e方法培育出的新类型生物,可以表达出甲种生物的某基因控制的性状,该表达过程应包括遗传信息的_______________过程。
自交不亲和性指某一植物的雌雄两性机能正常,但不能进行自花传粉或同一品系 内异花传粉的现象,如某品种烟草为二倍体雌雄同株植物,却无法自交产生后代。请回答:
(1)烟草的自交不亲和性是由位于一对同源染色体上的复等位基因(S1、S2……S15)控制,以上复等位基因的出现是 的结果,同时也体现了该变异具有 特点。
(2)烟草的花粉只有通过花粉管(花粉管由花粉萌发产生)输送到卵细胞所在处,才能完成受精。下图为不亲和基因的作用规律:
①将基因型为S1S2的花粉授于基因型为S2S4的烟草,则子代的基因型为 ;若将上述亲本进行反交,子代的基因型为 。
②自然条件下,烟草不存在S系列基因的纯合个体,结合示意图说出理由: 。
③科学家将某抗病基因M成功导入基因型为S2S4的烟草体细胞,经 后获得成熟的抗病植株。如图,已知M基因成功导入到II号染色体上,但不清楚具体位置。现以该植株为父本,与基因型为S1S2的母本杂交,根据子代中的抗病个体的比例确定M基因的具体位置。
a、若后代中抗病个体占 ,则说明M基因插入到S2基因中使该基因失活。
b
(3)研究发现,S基因控制合成S核酸酶和S蛋白因子的两个部分,前者在雌蕊中表达,后者在花粉管中表达,传粉后,雌蕊产生的S核酸酶进入花粉管中,与对应的S因子特异性结合,进而将花粉管中的rRNA降解,据此分析花粉管不能伸长的直接原因是_______。
试题篮
()