油菜的株高由等位基因G和g决定,GG为高秆,Gg为中秆, g g为矮秆。B基因是另一种植物的高秆基因,B基因与G基因在油菜的株高上有相同的效果,并且株高与这两个基因的数量正相关。下图是培育转基因油菜的操作流程。请回答下列问题:
(1)步骤①中用到的工具酶是 ,可用含 的培养基来筛选含有目的基因的油菜受体细胞,目的基因能在植物体内稳定遗传的关键是 。
(2)若将一个B基因连接到了矮秆油菜的染色体上并在植株中得到成功表达,且B基因与g基因位于非同源染色体上,这样的转基因油菜表现为 ,该转基因油菜自交产生的子一代中,高秆植株应占 。
(3)若将一个B基因连接到了中秆油菜的染色体上并在植株中得到成功表达,培育了甲~丁四种转基因油菜(如下图)
①这四种油菜中,丙植株的表现型与其余三种植株不同。理由是 。
②在不考虑交叉互换的前提下,这四种转基因油菜分别自交,子代有3种表现型的是 ,另外还有一种转基因油菜的自交子代也有3种表现型,请在下图中的染色体上标出B基因的位置。
2008年诺贝尔化学奖授予了三位在研究绿色荧光蛋白(GFP)方面作出突出贡献的科学家。绿色荧光蛋白(GFP)能在蓝光或紫外光下发出荧光,这样借助GFP发出的荧光就可以跟踪蛋白质在细胞内部的移动情况,帮助推断蛋白质的功能。GFP基因可作为目的基因用于培育绿色荧光小鼠,下图表示培育绿色荧光小鼠的基本流程:
请根据上述材料回答下列问题:
(1)图中过程②常用的方法是 ;过程③利用的生物技术是 ;在进行过程④前,利用 技术可以获得数目更多且基因型相同的绿色荧光小鼠。
(2)用于培育绿色荧光小鼠的基因表达载体的组成必须有启动子、 、 、 等部分。
(3)cDNA属于 基因文库,其构建方法是:用某种生物发育的某个时期的mRNA通过 产生cDNA片段,与 连接后储存在一个受体菌群中。
(4)PCR是一项利用DNA复制的原理在生物体外复制特定DNA片段的核酸合成技术。其基本过程是:加热至90~95℃使 →冷却至55~60℃使 结合到互补DNA链→加热至70~75℃使 从引物起始进行互补链的合成,如此反复进行。
毛角蛋白Ⅱ型中间丝(KIF Ⅱ)基因与绒山羊的羊绒质量密切相关。获得转KIF Ⅱ基因的高绒质绒山羊的简单流程如图。
(1)过程①中最常用的运载工具是 ,所需要的酶是限制酶和 。
(2)在过程②中,用 处理将皮肤组织块分散成单个成纤维细胞。在培养过程中,将成纤维细胞置于5% CO2的气体环境中,CO2的作用是 。
(3)在过程③中,用 处理以获取更多的卵(母)细胞。成熟卵(母)细胞在核移植前需要进行 处理。
(4)从重组细胞到早期胚胎过程中所用的胚胎工程技术是 。在胚胎移植前,通过 技术可获得较多胚胎。
GDNF是一种神经营养因子,对损伤的神经细胞具有营养和保护作用。研究人员构建了含GDNF基因的表达载体(如图1所示),并导入到大鼠神经干细胞中,用于干细胞基因治疗的研究。请回答:
(1)构建含GDNF基因的表达载体时,需选择图1中的 限制酶进行酶切。
(2)经酶切后的载体和GDNF基因进行连接,连接产物经筛选得到的载体主要有3种:单个载体自连、GDNF基因与载体正向连接、GDNF基因与载体反向连接(如图1所示)。为鉴定这3种连接方式,选择HpaⅠ酶和BamHⅠ酶对筛选得到的载体进行双酶切,并对酶切后的DNA片段进行电泳分析,结果如图2所示。图中第
泳道显示所鉴定的载体是正向连接的。
(3)将正向连接的表达载体导入神经干细胞后,为了检测GDNF基因是否成功表达,可用相应的 与提取的蛋白质杂交。当细胞培养的神经干细胞达到一定密度时产生接触抑制,换瓶后进行 培养以得到更多数量的细胞,用于神经干细胞移植治疗实验。
(4)对于神经干细胞可以来源于胚胎干细胞的诱导分化,胚胎干细胞来源于 ,在培养时可以只分裂不分化,但是通过诱导可以分化成各种不同的组织细胞,胚胎干细胞的这个特性称为 。
(5)胚胎干细胞也可以来自于核移植的重组细胞,一般体细胞核移植要比胚胎细胞核移植难度大,原因是 ,而取自卵巢的卵母细胞需要培养到 期,才可进行核移植。
已知正常的β珠蛋白基因(以βA表示)经MstⅡ限制性核酸内切酶切割后可得到长度为1.15 kb和0.2 kb的两个片段(其中0.2 kb的片段通常无法检测到),异常的β珠蛋白基因(以βS表示)由于突变恰好在MstⅡ限制性核酸内切酶切割点上,因而失去了该酶切位点,经MstⅡ限制性核酸内切酶处理后只能形成一个1.35 kb的DNA片段,如图1;现用MstⅡ限制性核酸内切酶对编号为1、2、3的三份样品进行处理,并进行DNA电泳(电泳时分子量越小扩散越快),结果如图2,则1、2、3号样品所对应个体的基因型分别是(以βA、βS表示相关的基因)
A.βSβS、βAβS、βAβA
B.βAβA、βAβS、βSβS
C.βAβS、βSβS、βAβA
D.βAβS、βAβA、βSβS
降钙素是一种多肽类激素,临床上用于治疗骨质疏松症等。人的降钙素活性很低,半衰期较短。某科学机构为了研发一种活性高、半衰期长的新型降钙素,预期新型从降钙素的功能出发,推测相应的脱氧核苷酸序列,并人工合成了两条各含72个碱基的DNA单链,两条链通过18个碱基对形成部分双链DNA片段,再利用Klenow酶补平,获得双链DNA,过程如图。
在此过程中发现,合成较长的核苷酸单链易产生缺失碱基的现象。分析回答下列问题:
(1)Klenow酶是一种_____________酶,合成的双链DNA有_______个碱基对。
(2)获得的双链DNA经EcoRⅠ(识别序列和切割位点-G↓AATTC-)和BamHⅠ(识别序列和切割位点-G↓GATCC-)双酶切后插入到大肠杆菌质粒中,筛选含重组质粒的大肠杆菌并进行DNA测序验证。
①大肠杆菌是理想的受体细胞,这是因为它____________________________。
②设计EcoRⅠ和BamHⅠ双酶切的目的是_______________________________。
③大肠杆菌质粒中含有标记基因是为了 。
(3)经DNA测序表明,最初获得的多个重组质粒,均未发现完全正确的基因序列,最可能的原因是____________________________________________________。
(4)上述制备该新型降钙素,运用的现代生物工程技术是__________________。
图1表示含有目的基因D的DNA片段长度(bp即碱基对)和部分碱基序列,图2表示一种质粒的结构和部分碱基序列。现有Msp Ⅰ、BamH Ⅰ、Mbo Ⅰ、Sma Ⅰ4种限制性核酸内切酶切割的碱基序列和酶切位点分别为C↓CGG、G↓GATCC、↓GATC、CCC↓GGG。请回答下列问题:
(1)若用限制酶SmaⅠ完全切割图1中DNA片段,产生的末端是 末端,其产物长度为 。
(2)若图1中虚线方框内的碱基对被T-A碱基对替换,那么基因D就突变为基因d。从杂合子分离出图1及其对应的DNA片段,用限制酶Sma Ⅰ完全切割,产物中共有 种不同DNA片段。
(3)若将图2中质粒和目的基因D通过同种限制酶处理后进行,形成重组质粒,那么应选用的限制酶是 。在导入重组质粒后,为了筛选出含重组质粒的大肠杆菌,一般需要用添加 的培养基进行培养。经检测,部分含有重组质粒的大肠杆菌菌株中目的基因D不能正确表达,其最可能的原因是 。
通过各种方法改善农作物的遗传性状,提高粮食产量一直是育种工作者不断努力的目标,下图表示一些育种途径。请回答下列问题:
(1)图中需用到限制酶的育种途径是 (填数字),该育种途径的原理是 ,PCR技术可以为该途径提供 ,在PCR的过程中催化子链合成的酶是 。
(2)图中(7)途径是 ,途径(5)(7)(8)相对于途径(5)(6)的优势是 。
(3)以矮秆易感稻瘟病(ddrr)和高秆抗稻瘟病(DDRR)水稻为亲本,通过途径(5)、(6)得到ddRR。该育种过程中第一次筛选在 (P/F1/F2)中进行,得到基因型肯定为ddRR的植株至少需要 年。
回答下列有关基因工程的问题。
苏云金杆菌 (Bt)能产生具有杀虫能力的毒素蛋白。下图是转Bt毒素蛋白基因植物的培育过程示意图 (为抗氨苄青霉素基因),①~④表示过程。
(1)由HindⅢ酶切后,得到DNA片段的末端是 ( )
(2)将图中①的DNA用HindⅢ、BamHⅠ完全酶切后,产生 种DNA片段,②过程可获得 种重组质粒。如果只用BamHⅠ酶切,目的基因与质粒连接后可获得 种重组质粒。
(3)该过程中Bt毒素蛋白基因插入质粒后,不应影响质粒的 ( ) (多选)
A.复制 | B.转录 | C.碱基对的数量 | D.抗性基因的表达 |
(4)此基因工程中大肠杆菌质粒的作用是 ,根瘤农杆菌的作用是 。生产上常将上述转基因作物与非转基因作物混合播种,其目的是降低害虫种群中的 基因的基因频率的增长速率。
普通棉花中含β-甘露糖苷酶基因(GhMnaA2),能在纤维细胞中特异性表达,产生的β-甘露糖苷酶催化半纤维素降解,棉纤维长度变短。为了培育新的棉花品种,科研人员构建了反义GhMnaA2基因表达载体,利用农杆菌转化法导入棉花细胞,成功获得转基因棉花品种,具体过程如下。请分析回答:
(1)①和②过程中所用的限制性内切酶分是 、 。
(2)基因表达载体除了图示组成外,至少有 等(至少答两个)。
(3)③过程中用酶切法可鉴定正、反义表达载体。用SmaⅠ酶和NotⅠ酶完全切割正义基因表达载体获得0.05kb、3.25kb、5.95kb、9.45kb四种长度的DNA片段,则用NotⅠ酶切反义基因表达载体获得DNA片段的长度应是 和 。
(4)④过程中利用农杆菌介导转化棉花细胞的过程中,整合到棉花细胞染色体DNA的区段是 ,转化后的细胞再通过 形成植物体。
(5)导入细胞内的反义GhMnaA2转录的mRNA能与细胞内的GhMnaA2转录的mRNA互补配对,从而 (促进或抑制)基因的表达,其意义是 。
利用相关工程技术可以获得抗黑腐病杂种黑芥-花椰菜植株,已知野生黑芥具有黑腐病的抗性基因,而花椰菜易受黑腐病菌的危害而患黑腐病,技术人员用一定剂量的紫外线处理黑芥原生质体可使其染色体片段化,并丧失再生能力,再利用此原生质体作为部分遗传物质的供体与完整的花椰菜原生质体融合,流程如下图。
据图回答下列问题:
(1)该过程用到的工程技术有 和 。
(2)过程①所需的酶是 ,过程②PEG的作用是 ,经过②操作后,需筛选出融合的杂种细胞,显微镜下观察融合的活细胞中有供体的叶绿体存在可作为初步筛选杂种细胞的标志。
(3)原生质体培养液中需要加入适宜浓度的甘露醇以保持一定的渗透压,其作用是 。原生质体经过细胞壁再生,进而分裂和脱分化形成 。
(4)若分析再生植株的染色体变异类型,应剪取再生植株和双亲植株的根尖,制成装片,然后在显微镜下观察比较染色体的 ;将杂种植株栽培在含有 的环境中,可筛选出具有高抗性的杂种植株。
下面是将乙肝病毒控制合成的病毒表面主蛋白的基因HBsAg导入巴斯德毕赤酵母菌生产乙肝疫苗的过程及有关资料,请分析回答下列问题。
资料1:巴斯德毕赤酵母菌可用培养基中甲醇作为其生活的唯一碳源,同时AOX1基因(醇氧化酶基因)受到诱导而表达,5'AOX1和3'AOXl(TT)是基因AOX1的启动子和终止子,此启动子也能使外源基因高效表达。
资料2:巴斯德毕赤酵母菌体内无天然质粒,下图为科学家改造的pPIC9K质粒,其与目的基因形成的重组质粒在特定部位酶切后形成的重组DNA片段可以整合到酵母菌染色体上,最终实现目的基因的表达。
(1)如果要将HBsAg基因和pPIC9K质粒重组,应该在HBsAg基因两侧的A和B位置接上_________限制酶识别序列(SnaB I、Avr II、SacI、Bgl II四种限制酶的识别序列均不相同),这样设计的优点是避免质粒和目的基因自身环化。
(2)酶切获取HBsA9基因后,需用______________将其连接到pPIC9K质粒上,形成重组质粒,根据步骤②可知步骤①将重组质粒先导入大肠杆菌的目的是______________。
(3)步骤3中应选用限制酶______________来切割从大肠杆菌分离的重组质粒从而获得图中所示的重组DNA片段,然后将其导入巴斯德毕赤酵母菌细胞。
(4)为了确认巴斯德毕赤酵母菌转化是否成功,在培养基中应该加入______________以便筛选。
(5)转化的酵母菌在培养基上培养一段时间后,需要向其中加入______________以维持其生活,同时诱导HBsA9基因表达。
(6)与大肠杆菌等细菌相比,用巴斯德毕赤酵母菌细胞作为基因工程的受体细胞,其优点是在蛋白质合成后,细胞可以对其进行_______并分泌到细胞外,便于提取。
(7)培育转化酵母细胞所利用的遗传学原理是______________。
若利用基因工程技术培育能固氮的水稻新品种,其在环保上的重要意义是( )
A.减少氮肥的使用量,降低生产成本 |
B.减少氮肥的使用量,提高经济效益 |
C.避免氮肥过多引起环境污染 |
D.改良土壤结构 |
应用生物工程技术能获得人们需要的生物新品种或新产品。请据图回答下列问题:
(1)②过程常用的方法是 。要检测目的基因是否翻译成了人生长激素,利用的技术是 。
(2)转基因牛可通过分泌的乳汁来生产人生长激素,则说明基因工程能够突破自然界生物的 。基因表达载体中,人生长激素基因的前端必须有 ,使人生长激素基因在乳腺细胞中特异性高效表达。
(3)在抗虫棉培育过程中, ④过程常用的方法是农杆菌转化法,是利用农杆菌会被棉花植株伤口处细胞分泌的 吸引并移向这些细胞,而且Ti质粒有 的特点。
在矮牵牛的体内能合成一种能抗除草剂的物质即抗草胺磷,下图是利用矮牵牛来培养转基因大豆的过程。
(1)图中①应为________________。在构建①的过程中,要用到的对识别的序列具有特异性的酶是________________。
(2)在将①导入土壤农杆菌之前,往往要用______处理土壤农杆菌,使之成为____细胞,然后将它们在缓冲液中混合培养以完成转化过程。
(3)②中的部分农杆菌不能在含四环素培养基上生长,其原因是_______________________。
(4)A→B过程需要在恒温箱中_________培养,注意观察、记录_________的生长情况。
(5)人工种子是以图中_________(用字母和箭头表示)过程中形成的_________、不定芽、顶芽和腋芽等为材料,经过____________包装得到的种子。
试题篮
()