有以下两下数串:1,3,5,7,…1991,1993,1995,1997,1999和1,4,7,10…1990,1993,1996,1999,同时出现在这两个数串中的数的个数共有____________个.
在求1+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:
S=1+62+63+64+65+66+67+68+69①
然后在①式的两边都乘以6,得:
6S=6+62+63+64+65+66+67+68+69+610②
②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S=,得出答案后,爱动脑筋的小林想:
如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是( )
A. | B. | C. | D.a2014﹣1 |
有一列数如下:1,0,1,0,0,1,0,0,0,1,0,0,0,0,1,…,则第9个1在这列数中是第 个数.
如图,A点的初始位置位于数轴上的原点,现对A点做如下移动:第1次从原点向右移动1个单位长度至B点,第2次从B点向左移动3个单位长度至C点,第3次从C点向右移动6个单位长度至D点,第4次从D点向左移动9个单位长度至E点,…,依此类推,这样至少移动 28 次后该点到原点的距离不小于41
为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是 .
一对小兔子从出生到第三个月就可以长大,并且生一对小兔子,以后每个月可以生一对小兔子,新生的小兔子三个月后又可以生小兔子.如果你也有一对刚出生的小兔子,那么到第10个月你所有的兔子的对数是( )
A.9 | B.89 | C.21 | D.28 |
王老师在教学过程中善于把数学知识与实际生活联系在一起.在课堂上,他把全班同学分成五组,编号分别是A、B、C、D、E,每组的人数分别是10、7、9、8、6.游戏规则:当他数完1后,人数最少的那一组学生不动,其他各组各出一个人去人数最少的那组;当他数完2后,此时人数最少的那一组学生不动,其他各组再各出一个人去人数最少的那组…如此进行下去,那么当王老师数完2 008后,A、B、C、D、E五个组中的人数依次是( )
A.9、6、8、7、10
B.7、9、6、10、8
C.6、8、10、9、7
D.8、10、7、6、9
将正偶数按下表排成5列
|
第1列 |
第2列 |
第3列 |
第4列 |
第5列 |
第1行 |
|
2 |
4 |
6 |
8 |
第2行 |
16 |
14 |
12 |
10 |
|
第3行 |
|
18 |
20 |
22 |
24 |
第4行 |
32 |
30 |
28 |
26 |
|
… |
|
… |
|
|
|
根据上面排列的规律,2012应排在( )
A.第502行第1列
B.第250行第5列
C.第251行第4列
D.第252行第3列
将1、2、3、4、5、6这六个数字分别填入每个小方格中,如果要求每行、每列及每个对角线隔成的2×3方格内部都没有重复数字,则“▲”处填入的数字是( )
A.5 | B.4 | C.3 | D.2 |
四个小朋友站成一排,老师按图中所示的规则数数,数到2014时对应的小朋友可得一朵红花.那么,得红花的小朋友是( )
A.小沈 | B.小叶 | C.小李 | D.小王 |
一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=,16=).已知智慧数按从小到大顺序构成如下数列:
3,5,7,8,9,11,12,13,15,16,17,19,20,21,23,24,25,….
则第2006个智慧数是( )
A.2672 | B.2675 | C.2677 | D.2680 |
试题篮
()