优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 待定系数法求二次函数解析式
初中数学

如图,在平面直角坐标系中,已知抛物线 y = x 2 + bx + c 与直线 AB 相交于 A B 两点,其中 A ( - 3 , - 4 ) B ( 0 , - 1 )

(1)求该抛物线的函数表达式;

(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 PA PB ,求 ΔPAB 面积的最大值;

(3)将该抛物线向右平移2个单位长度得到抛物线 y = a 1 x 2 + b 1 x + c 1 ( a 1 0 ) ,平移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点 E ,使以点 B C D E 为顶点的四边形为菱形,若存在,请直接写出点 E 的坐标;若不存在,请说明理由.

来源:2020年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,两条抛物线 y 1 = - x 2 + 4 y 2 = - 1 5 x 2 + bx + c 相交于 A B 两点,点 A x 轴负半轴上,且为抛物线 y 2 的最高点.

(1)求抛物线 y 2 的解析式和点 B 的坐标;

(2)点 C 是抛物线 y 1 A B 之间的一点,过点 C x 轴的垂线交 y 2 于点 D ,当线段 CD 取最大值时,求 S ΔBCD

来源:2020年云南省昆明市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 + bx + c 经过点 ( 3 , 12 ) ( - 2 , - 3 ) ,与两坐标轴的交点分别为 A B C ,它的对称轴为直线 l

(1)求该抛物线的表达式;

(2) P 是该抛物线上的点,过点 P l 的垂线,垂足为 D E l 上的点.要使以 P D E 为顶点的三角形与 ΔAOC 全等,求满足条件的点 P ,点 E 的坐标.

来源:2020年陕西省中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 ) 的自变量 x 与函数值 y 的部分对应值如下表:

x

- 2

- 1

0

1

2

y

m

0

- 3

n

- 3

(1)根据以上信息,可知抛物线开口向   ,对称轴为  

(2)求抛物线的表达式及 m n 的值;

(3)请在图1中画出所求的抛物线.设点 P 为抛物线上的动点, OP 的中点为 P ' ,描出相应的点 P ' ,再把相应的点 P ' 用平滑的曲线连接起来,猜想该曲线是哪种曲线?

(4)设直线 y = m ( m > - 2 ) 与抛物线及(3)中的点 P ' 所在曲线都有两个交点,交点从左到右依次为 A 1 A 2 A 3 A 4 ,请根据图象直接写出线段 A 1 A 2 A 3 A 4 之间的数量关系  

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = x 2 4 x 轴交于点 A B (点 A 位于点 B 的左侧), C 为顶点,直线 y = x + m 经过点 A ,与 y 轴交于点 D

(1)求线段 AD 的长;

(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为 C ' .若新抛物线经过点 D ,并且新抛物线的顶点和原抛物线的顶点的连线 CC ' 平行于直线 AD ,求新抛物线对应的函数表达式.

来源:2018年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,图形 ABCD 是由两个二次函数 y 1 = k x 2 + m ( k < 0 ) y 2 = a x 2 + b ( a > 0 ) 的部分图象围成的封闭图形.已知 A ( 1 , 0 ) B ( 0 , 1 ) D ( 0 , 3 )

(1)直接写出这两个二次函数的表达式;

(2)判断图形 ABCD 是否存在内接正方形(正方形的四个顶点在图形 ABCD 上),并说明理由;

(3)如图2,连接 BC CD AD ,在坐标平面内,求使得 ΔBDC ΔADE 相似(其中点 C 与点 E 是对应顶点)的点 E 的坐标.

来源:2018年江苏省连云港市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx ( a 0 ) x 轴正半轴于点 A ,直线 y = 2 x 经过抛物线的顶点 M .已知该抛物线的对称轴为直线 x = 2 ,交 x 轴于点 B

(1)求 a b 的值.

(2) P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接 OP BP .设点 P 的横坐标为 m ΔOBP 的面积为 S ,记 K = S m .求 K 关于 m 的函数表达式及 K 的范围.

来源:2018年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = 1 2 x 2 + bx + c 经过点 ( 1 , 0 ) ( 0 , 3 2 )

(1)求该抛物线的函数表达式;

(2)将抛物线 y = 1 2 x 2 + bx + c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.

来源:2018年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = a x 2 + bx ( a < 0 ) 过点 E ( 10 , 0 ) ,矩形 ABCD 的边 AB 在线段 OE 上(点 A 在点 B 的左边),点 C D 在抛物线上.设 A ( t , 0 ) ,当 t = 2 时, AD = 4

(1)求抛物线的函数表达式.

(2)当 t 为何值时,矩形 ABCD 的周长有最大值?最大值是多少?

(3)保持 t = 2 时的矩形 ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点 G H ,且直线 GH 平分矩形的面积时,求抛物线平移的距离.

来源:2018年浙江省金华市(丽水市)中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx 3 ( a 0 ) 经过点 ( 1 , 0 ) ( 3 , 0 ) ,求 a b 的值.

来源:2018年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

定义:如图1,抛物线 y = a x 2 + bx + c ( a 0 ) x 轴交于 A B 两点,点 P 在该抛物线上 ( P 点与 A B 两点不重合),如果 ΔABP 的三边满足 A P 2 + B P 2 = A B 2 ,则称点 P 为抛物线 y = a x 2 + bx + c ( a 0 ) 的勾股点.

(1)直接写出抛物线 y = x 2 + 1 的勾股点的坐标.

(2)如图2,已知抛物线 C : y = a x 2 + bx ( a 0 ) x 轴交于 A B 两点,点 P ( 1 , 3 ) 是抛物线 C 的勾股点,求抛物线 C 的函数表达式.

(3)在(2)的条件下,点 Q 在抛物线 C 上,求满足条件 S ΔABQ = S ΔABP Q 点(异于点 P ) 的坐标.

来源:2017年浙江省衢州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,设二次函数 y 1 = ( x + a ) ( x a 1 ) ,其中 a 0

(1)若函数 y 1 的图象经过点 ( 1 , 2 ) ,求函数 y 1 的表达式;

(2)若一次函数 y 2 = ax + b 的图象与 y 1 的图象经过 x 轴上同一点,探究实数 a b 满足的关系式;

(3)已知点 P ( x 0 m ) Q ( 1 , n ) 在函数 y 1 的图象上,若 m < n ,求 x 0 的取值范围.

来源:2017年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,抛物线 y = x 2 mx 3 ( m > 0 ) y 轴于点 C CA y 轴,交抛物线于点 A ,点 B 在抛物线上,且在第一象限内, BE y 轴,交 y 轴于点 E ,交 AO 的延长线于点 D BE = 2 AC

(1)用含 m 的代数式表示 BE 的长.

(2)当 m = 3 时,判断点 D 是否落在抛物线上,并说明理由.

(3)若 AG / / y 轴,交 OB 于点 F ,交 BD 于点 G

①若 ΔDOE ΔBGF 的面积相等,求 m 的值.

②连接 AE ,交 OB 于点 M ,若 ΔAMF ΔBGF 的面积相等,则 m 的值是  

来源:2016年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为原点,平行于 x 轴的直线与抛物线 L : y = a x 2 相交于 A B 两点(点 B 在第一象限),点 D AB 的延长线上.

(1)已知 a = 1 ,点 B 的纵坐标为2.

①如图1,向右平移抛物线 L 使该抛物线过点 B ,与 AB 的延长线交于点 C ,求 AC 的长.

②如图2,若 BD = 1 2 AB ,过点 B D 的抛物线 L 2 ,其顶点 M x 轴上,求该抛物线的函数表达式.

(2)如图3,若 BD = AB ,过 O B D 三点的抛物线 L 3 ,顶点为 P ,对应函数的二次项系数为 a 3 ,过点 P PE / / x 轴,交抛物线 L E F 两点,求 a 3 a 的值,并直接写出 AB EF 的值.

来源:2016年浙江省金华市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知二次函数 y = x 2 + bx + c ( b c 为常数)的图象经过点 A ( 3 , 1 ) ,点 C ( 0 , 4 ) ,顶点为点 M ,过点 A AB / / x 轴,交 y 轴于点 D ,交该二次函数图象于点 B ,连接 BC

(1)求该二次函数的解析式及点 M 的坐标;

(2)若将该二次函数图象向下平移 m ( m > 0 ) 个单位,使平移后得到的二次函数图象的顶点落在 ΔABC 的内部(不包括 ΔABC 的边界),求 m 的取值范围;

(3)点 P 是直线 AC 上的动点,若点 P ,点 C ,点 M 所构成的三角形与 ΔBCD 相似,请直接写出所有点 P 的坐标(直接写出结果,不必写解答过程).

来源:2016年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学待定系数法求二次函数解析式试题