优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 抛物线与x轴的交点
初中数学

在平面直角坐标系中,已知函数 y 1 = x 2 + ax + 1 y 2 = x 2 + bx + 2 y 3 = x 2 + cx + 4 ,其中 a b c 是正实数,且满足 b 2 = ac .设函数 y 1 y 2 y 3 的图象与 x 轴的交点个数分别为 M 1 M 2 M 3 (    )

A.若 M 1 = 2 M 2 = 2 ,则 M 3 = 0 B.若 M 1 = 1 M 2 = 0 ,则 M 3 = 0

C.若 M 1 = 0 M 2 = 2 ,则 M 3 = 0 D.若 M 1 = 0 M 2 = 0 ,则 M 3 = 0

来源:2020年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知抛物线 y = a x 2 + bx + c ( a b c 是常数, a 0 c > 1 ) 经过点 ( 2 , 0 ) ,其对称轴是直线 x = 1 2 .有下列结论:

abc > 0

②关于 x 的方程 a x 2 + bx + c = a 有两个不等的实数根;

a < - 1 2

其中,正确结论的个数是 (    )

A.0B.1C.2D.3

来源:2020年天津市中考数学试卷
  • 题型:未知
  • 难度:未知

若二次函数 y = - x 2 + 2 x + k 的图象与 x 轴有两个交点,则 k 的取值范围是  

来源:2020年宁夏中考数学试卷
  • 题型:未知
  • 难度:未知

在平面直角坐标系中,点 O 为坐标原点,抛物线 y = x 2 - 2 x - 3 y 轴交于点 A ,与 x 轴正半轴交于点 B ,连接 AB ,将 Rt Δ OAB 向右上方平移,得到 Rt O ' A ' B ' ,且点 O ' A ' 落在抛物线的对称轴上,点 B ' 落在抛物线上,则直线 A ' B ' 的表达式为 (    )

A. y = x B. y = x + 1 C. y = x + 1 2 D. y = x + 2

来源:2020年江西省中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = x 2 4 x + k 的图象的顶点在 x 轴下方,则实数 k 的取值范围是  

来源:2018年江苏省镇江市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = x 2 + 6 x 5 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,其顶点为 P ,连接 PA AC CP ,过点 C y 轴的垂线 l

(1)求点 P C 的坐标;

(2)直线 l 上是否存在点 Q ,使 ΔPBQ 的面积等于 ΔPAC 的面积的2倍?若存在,求出点 Q 的坐标;若不存在,请说明理由.

来源:2018年江苏省徐州市中考数学试卷
  • 题型:未知
  • 难度:未知

平面直角坐标系 xOy 中,二次函数 y = x 2 2 mx + m 2 + 2 m + 2 的图象与 x 轴有两个交点.

(1)当 m = 2 时,求二次函数的图象与 x 轴交点的坐标;

(2)过点 P ( 0 , m 1 ) 作直线 l y 轴,二次函数图象的顶点 A 在直线 l x 轴之间(不包含点 A 在直线 l 上),求 m 的范围;

(3)在(2)的条件下,设二次函数图象的对称轴与直线 l 相交于点 B ,求 ΔABO 的面积最大时 m 的值.

来源:2018年江苏省泰州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,二次函数 y = ( x a ) ( x 3 ) ( 0 < a < 3 ) 的图象与 x 轴交于点 A B (点 A 在点 B 的左侧),与 y 轴交于点 D ,过其顶点 C 作直线 CP x 轴,垂足为点 P ,连接 AD BC

(1)求点 A B D 的坐标;

(2)若 ΔAOD ΔBPC 相似,求 a 的值;

(3)点 D O C B 能否在同一个圆上?若能,求出 a 的值;若不能,请说明理由.

来源:2018年江苏省宿迁市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知抛物线 y = x 2 4 x 轴交于点 A B (点 A 位于点 B 的左侧), C 为顶点,直线 y = x + m 经过点 A ,与 y 轴交于点 D

(1)求线段 AD 的长;

(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为 C ' .若新抛物线经过点 D ,并且新抛物线的顶点和原抛物线的顶点的连线 CC ' 平行于直线 AD ,求新抛物线对应的函数表达式.

来源:2018年江苏省苏州市中考数学试卷
  • 题型:未知
  • 难度:未知

已知二次函数 y = 2 ( x 1 ) ( x m 3 ) ( m 为常数).

(1)求证:不论 m 为何值,该函数的图象与 x 轴总有公共点;

(2)当 m 取什么值时,该函数的图象与 y 轴的交点在 x 轴的上方?

来源:2018年江苏省南京市中考数学试卷
  • 题型:未知
  • 难度:未知

已知,点 M 为二次函数 y = ( x b ) 2 + 4 b + 1 图象的顶点,直线 y = mx + 5 分别交 x 轴正半轴, y 轴于点 A B

(1)判断顶点 M 是否在直线 y = 4 x + 1 上,并说明理由.

(2)如图1,若二次函数图象也经过点 A B ,且 mx + 5 > ( x b ) 2 + 4 b + 1 ,根据图象,写出 x 的取值范围.

(3)如图2,点 A 坐标为 ( 5 , 0 ) ,点 M ΔAOB 内,若点 C ( 1 4 y 1 ) D ( 3 4 y 2 ) 都在二次函数图象上,试比较 y 1 y 2 的大小.

来源:2018年浙江省嘉兴市(舟山市)中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系 xOy 中,已知抛物线 y = a x 2 + bx ( a > 0 ) 的顶点为 C ,与 x 轴的正半轴交于点 A ,它的对称轴与抛物线 y = a x 2 ( a > 0 ) 交于点 B .若四边形 ABOC 是正方形,则 b 的值是  

来源:2018年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

设二次函数 y = a x 2 + bx ( a + b ) ( a b 是常数, a 0 )

(1)判断该二次函数图象与 x 轴的交点的个数,说明理由.

(2)若该二次函数图象经过 A ( 1 , 4 ) B ( 0 , 1 ) C ( 1 , 1 ) 三个点中的其中两个点,求该二次函数的表达式.

(3)若 a + b < 0 ,点 P ( 2 m ) ( m > 0 ) 在该二次函数图象上,求证: a > 0

来源:2018年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

四位同学在研究函数 y = x 2 + bx + c ( b c 是常数)时,甲发现当 x = 1 时,函数有最小值;乙发现 1 是方程 x 2 + bx + c = 0 的一个根;丙发现函数的最小值为3;丁发现当 x = 2 时, y = 4 ,已知这四位同学中只有一位发现的结论是错误的,则该同学是 (    )

A.甲B.乙C.丙D.丁

来源:2018年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,过抛物线 y = 1 4 x 2 2 x 上一点 A x 轴的平行线,交抛物线于另一点 B ,交 y 轴于点 C ,已知点 A 的横坐标为 2

(1)求抛物线的对称轴和点 B 的坐标;

(2)在 AB 上任取一点 P ,连接 OP ,作点 C 关于直线 OP 的对称点 D

①连接 BD ,求 BD 的最小值;

②当点 D 落在抛物线的对称轴上,且在 x 轴上方时,求直线 PD 的函数表达式.

来源:2017年浙江省温州市中考数学试卷
  • 题型:未知
  • 难度:未知

初中数学抛物线与x轴的交点试题