在平面直角坐标系中,已知函数 , , ,其中 , , 是正实数,且满足 .设函数 , , 的图象与 轴的交点个数分别为 , , ,
A.若 , ,则 B.若 , ,则
C.若 , ,则 D.若 , ,则
已知抛物线 , , 是常数, , 经过点 ,其对称轴是直线 .有下列结论:
① ;
②关于 的方程 有两个不等的实数根;
③ .
其中,正确结论的个数是
A.0B.1C.2D.3
在平面直角坐标系中,点 为坐标原点,抛物线 与 轴交于点 ,与 轴正半轴交于点 ,连接 ,将 向右上方平移,得到 △ ,且点 , 落在抛物线的对称轴上,点 落在抛物线上,则直线 的表达式为
A. B. C. D.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于 、 两点,与 轴交于点 ,其顶点为 ,连接 、 、 ,过点 作 轴的垂线 .
(1)求点 , 的坐标;
(2)直线 上是否存在点 ,使 的面积等于 的面积的2倍?若存在,求出点 的坐标;若不存在,请说明理由.
平面直角坐标系 中,二次函数 的图象与 轴有两个交点.
(1)当 时,求二次函数的图象与 轴交点的坐标;
(2)过点 作直线 轴,二次函数图象的顶点 在直线 与 轴之间(不包含点 在直线 上),求 的范围;
(3)在(2)的条件下,设二次函数图象的对称轴与直线 相交于点 ,求 的面积最大时 的值.
如图,在平面直角坐标系中,二次函数 的图象与 轴交于点 、 (点 在点 的左侧),与 轴交于点 ,过其顶点 作直线 轴,垂足为点 ,连接 、 .
(1)求点 、 、 的坐标;
(2)若 与 相似,求 的值;
(3)点 、 、 、 能否在同一个圆上?若能,求出 的值;若不能,请说明理由.
如图,已知抛物线 与 轴交于点 , (点 位于点 的左侧), 为顶点,直线 经过点 ,与 轴交于点 .
(1)求线段 的长;
(2)平移该抛物线得到一条新抛物线,设新抛物线的顶点为 .若新抛物线经过点 ,并且新抛物线的顶点和原抛物线的顶点的连线 平行于直线 ,求新抛物线对应的函数表达式.
已知二次函数 为常数).
(1)求证:不论 为何值,该函数的图象与 轴总有公共点;
(2)当 取什么值时,该函数的图象与 轴的交点在 轴的上方?
已知,点 为二次函数 图象的顶点,直线 分别交 轴正半轴, 轴于点 , .
(1)判断顶点 是否在直线 上,并说明理由.
(2)如图1,若二次函数图象也经过点 , ,且 ,根据图象,写出 的取值范围.
(3)如图2,点 坐标为 ,点 在 内,若点 , , , 都在二次函数图象上,试比较 与 的大小.
如图,在平面直角坐标系 中,已知抛物线 的顶点为 ,与 轴的正半轴交于点 ,它的对称轴与抛物线 交于点 .若四边形 是正方形,则 的值是 .
设二次函数 , 是常数, .
(1)判断该二次函数图象与 轴的交点的个数,说明理由.
(2)若该二次函数图象经过 , , 三个点中的其中两个点,求该二次函数的表达式.
(3)若 ,点 , 在该二次函数图象上,求证: .
四位同学在研究函数 , 是常数)时,甲发现当 时,函数有最小值;乙发现 是方程 的一个根;丙发现函数的最小值为3;丁发现当 时, ,已知这四位同学中只有一位发现的结论是错误的,则该同学是
A.甲B.乙C.丙D.丁
试题篮
()