如图,在 中, , , 为 边的中点,线段 的垂直平分线交边 于点 .设 , ,则
A. B. C. D.
如图,在 中, , 是 边上一点,以 为直径的 经过 的中点 ,交 的延长线于点 ,连接 .
(1)求证: .
(2)若 , ,求 的长.
如图,在 中, , , 是 上的一点(不与 、 重合), ,垂足是点 ,设 ,四边形 的周长为 ,则下列图象能大致反映 与 之间的函数关系的是
A.B.
C.D.
我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”
(1)概念理解:
请你根据上述定义举一个等邻角四边形的例子;
(2)问题探究:
如图1,在等邻角四边形 中, , , 的中垂线恰好交于 边上一点 ,连接 , ,试探究 与 的数量关系,并说明理由;
(3)应用拓展:
如图2,在 与 中, , , ,将 绕着点 顺时针旋转角 得到 △ (如图 ,当凸四边形 为等邻角四边形时,求出它的面积.
已知直角三角形纸片的两条直角边长分别为 和 ,过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则
A. B. C. D.
如图,已知 是 的直径,点 在圆周上(不与 、 重合),点 在 的延长线上,连接 交 于点 ,若 ,则
A. B. C. D.
已知:如图,在 中, ,点 是底边 上一点且满足 , 是 的外接圆,过点 作 交 于点 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
如图,以 的直角边 为直径作 交斜边 于点 ,过圆心 作 ,交 于点 ,连接 .
(1)判断 与 的位置关系并说明理由;
(2)求证: ;
(3)若 , ,求 的长.
如图,等腰 的底边 ,面积为120,点 在边 上,且 , 是腰 的垂直平分线,若点 在 上运动,则 周长的最小值为 .
如图,已知 是 的直径, 是 延长线上一点, 切 于点 , 是 的弦, ,垂足为 .
(1)求证: .
(2)过点 作 交 于点 ,交 于点 ,连接 ,若 , ,求 的长.
下面有4张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合,具体要求如下:
(1)画一个直角边长为4,面积为6的直角三角形.
(2)画一个底边长为4,面积为8的等腰三角形.
(3)画一个面积为5的等腰直角三角形.
(4)画一个一边长为 ,面积为6的等腰三角形.
试题篮
()