如图1,在矩形 中, ,动点 从 出发,以每秒1个单位的速度,沿射线 方向移动,作 关于直线 的对称 ,设点 的运动时间为 .
(1)若 .
①如图2,当点 落在 上时,显然 是直角三角形,求此时 的值;
②是否存在异于图2的时刻,使得 是直角三角形?若存在,请直接写出所有符合题意的 的值?若不存在,请说明理由.
(2)当 点不与 点重合时,若直线 与直线 相交于点 ,且当 时存在某一时刻有结论 成立,试探究:对于 的任意时刻,结论“ ”是否总是成立?请说明理由.
如图,矩形纸片 中, , .现将其沿 对折,使得点 落在边 上的点 处,折痕与边 交于点 ,则 的长为
A. B. C. D.
如图,在平行四边形 中, , ,过点 作边 的垂线 交 的延长线于点 ,点 是垂足,连接 、 , 交 于点 .则下列结论:①四边形 是正方形;② ;③ ;④ ,正确的个数是
A.1B.2C.3D.4
问题情境:
在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片 沿对角线 剪开,得到 和 .并且量得 , .
操作发现:
(1)将图1中的 以点 为旋转中心,按逆时针方向旋转 ,使 ,得到如图2所示的△ ,过点 作 的平行线,与 的延长线交于点 ,则四边形 的形状是 .
(2)创新小组将图1中的 以点 为旋转中心,按逆时针方向旋转,使 、 、 三点在同一条直线上,得到如图3所示的△ ,连接 ,取 的中点 ,连接 并延长至点 ,使 ,连接 、 ,得到四边形 ,发现它是正方形,请你证明这个结论.
实践探究:
(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将 沿着 方向平移,使点 与点 重合,此时 点平移至 点, 与 相交于点 ,如图4所示,连接 ,试求 的值.
如图,在 中, , , , , 的平分线相交于点 ,过点 作 交 于点 ,则 的长为
A. B. C. D.
如图,四边形 是矩形 ,要在矩形 内作一个以 为边的正方形 ,某位同学的作法如下:
①作 的平分线 . 交 于点 ;
②以点 为圆心, 长为半径画弧,交 于点 ,连接 .
(1)求证:四边形 是正方形;
(2)若 ,求图中阴影部分的面积.
在矩形纸片 中, , , 是边 上的点,将纸片沿 折叠,使点 落在点 处,连接 ,当 为直角三角形时, 的长为 .
我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形 中,点 , , , 分别为边 , , , 的中点.求证:中点四边形 是平行四边形;
(2)如图2,点 是四边形 内一点,且满足 , , ,点 , , , 分别为边 , , , 的中点,猜想中点四边形 的形状,并证明你的猜想;
(3)若改变(2)中的条件,使 ,其他条件不变,直接写出中点四边形 的形状.(不必证明)
如图1,在四边形 中,如果对角线 和 相交并且相等,那么我们把这样的四边形称为等角线四边形.
(1)①在“平行四边形、矩形、菱形”中, 一定是等角线四边形(填写图形名称);
②若 、 、 、 分别是等角线四边形 四边 、 、 、 的中点,当对角线 、 还要满足 时,四边形 是正方形.
(2)如图2,已知 中, , , , 为平面内一点.
①若四边形 是等角线四边形,且 ,则四边形 的面积是 ;
②设点 是以 为圆心,1为半径的圆上的动点,若四边形 是等角线四边形,写出四边形 面积的最大值,并说明理由.
如图,在等腰直角三角形 中, , , 是 的中点, , 分别是 , 上的点(点 不与端点 , 重合),且 ,连接 并取 的中点 ,连接 并延长至点 ,使 ,连接 , , , .
(1)求证:四边形 是正方形;
(2)当点 在什么位置时,四边形 的面积最小?并求四边形 面积的最小值.
如图,在正方形 中, 为 的中点,延长 至 ,使 ,过 作 ,垂足为 ,过 作 的垂线交 的延长线于点 .
(1)求证: ;
(2)求证:四边形 是正方形.
已知矩形 中, 是 边上的一个动点,点 , , 分别是 , , 的中点.
(1)求证: ;
(2)设 ,当四边形 是正方形时,求矩形 的面积.
如图,在正方形ABCD中,△ABE和△CDF为直角三角形, , ,则EF的长是( )
A.7B.8C. D.
在△ABC中, ,D是△ABC内部或BC边上的一个动点(与B、C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.
(1)求∠D的度数;
(2)若两三角形重叠部分的形状始终是四边形AGDH.
①如图1,连接GH、AD,当 时,请判断四边形AGDH的形状,并证明;
②当AGDH的面积最大时,过A作 于P,且 ,求k的值.
试题篮
()