如图,矩形 中, 与 相交于点 , ,将 沿 折叠,点 的对应点为 ,连接 交 于点 ,且 ,在 边上有一点 ,使得 的值最小,此时
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , ,点 在边 上,且 ,点 为 的中点,点 为边 上的动点,当点 在 上移动时,使四边形 周长最小的点 的坐标为
A. |
|
B. |
, |
C. |
, |
D. |
|
如图,在正方形 中, , 分别为 , 的中点, 为对角线 上的一个动点,则下列线段的长等于 最小值的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在 中, , 、 是 的两条中线, 是 上一个动点,则下列线段的长度等于 最小值的是
A. |
|
B. |
|
C. |
|
D. |
|
如图,在正方形 中,点 , 将对角线 三等分,且 ,点 在正方形的边上,则满足 的点 的个数是
A. |
0 |
B. |
4 |
C. |
6 |
D. |
8 |
如图,直线l表示石家庄的太平河,点P表示朱河村,点Q表示黄庄村,欲在太平河1上修建一个水泵站(记为点M),分别向两村供水,现有如下四种修建水泵站供水管道的方案,图中实线表示修建的管道,则修建的管道最短的方案是( )
如图,四边形ABCD中,∠BAD=110°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为( )
A.110° B.120° C.130° D.140°
(年贵州省遵义市)如图,四边形ABCD中,∠C=,∠B=∠D=,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为( ).
A. | B. | C. | D. |
(年贵州省黔南州)如图,直线l外不重合的两点A、B,在直线l上求作一点C,使得AC+BC的长度最短,作法为:①作点B关于直线l的对称点B′;②连接AB′与直线l相交于点C,则点C为所求作的点.在解决这个问题时没有运用到的知识或方法是( )
A.转化思想
B.三角形的两边之和大于第三边
C.两点之间,线段最短
D.三角形的一个外角大于与它不相邻的任意一个内角
试题篮
()