优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 相似多边形的性质 / 填空题
初中数学

如图,□ABCD中,AC⊥AB.,E是CD上的点,.点P从D点出发,以1cm/s的速度沿DA运动至A点停止.则当△EDP为等腰三角形时,点P的运动时间为        

  • 题型:未知
  • 难度:未知

如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE,它的面积为1;取△ABC和△DEF各边中点,连接成正六角星形A1F1B1D1C1E1,如图(2)中阴影部分;取△A1B1C1和△D1E1F1各边中点,连接成正六角星形A2F2B2D2C2E2,如图(3)中阴影部分;如此下去…,则正六角星形A4F4B4D4C4E4的面积为________.

  • 题型:未知
  • 难度:未知

如图,点A1,A2,A3,A4,…,An在射线OA上,点B1,B2,B3,…,Bn―1在射线OB上,且A1B1∥A2B2∥A3B3∥…∥An﹣1Bn﹣1,A2B1∥A3B2∥A4B3∥…∥AnBn﹣1,△A1A2B1,△A2A3B2,…,△An1AnBn1为阴影三角形,若△A2B1B2,△A3B2B3的面积分别为1、4,则△A1A2B1的面积为__________;面积小于2014的阴影三角形共有__________个.

  • 题型:未知
  • 难度:未知

如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2014=                   .

  • 题型:未知
  • 难度:未知

如图,长方形ABCD中,AB=4,AD=3,E是边AB上一点(不与A、B重合),F是边BC上一点(不与B、C重合).若△DEF和△BEF是相似三角形,则CF=       

  • 题型:未知
  • 难度:未知

如图,矩形纸片ABDC中,AB=5,AC=3,将纸片折叠,使点B落在边CD上的B′处,折痕为AE.在折痕A E上存在一点P到边CD的距离与到点B的距离相等,则此相等距离为__________.

  • 题型:未知
  • 难度:未知

如图,在△ABC中,AB=AC,D、E是△ABC内两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6cm,DE=2cm,则BC=_________ .

  • 题型:未知
  • 难度:未知

如图,点G是Rt△ABC的重心,过点G作矩形GECF,当GF:GE=1:2时,则∠ B的正切值为   

  • 题型:未知
  • 难度:未知

已知点P是边长为4的正方形ABCD内一点,且PB="3" , BF⊥BP,垂足是点B, 若在射线BF上找一点M,使以点B, M, C为顶点的三角形与△ABP相似,则BM为___________.

  • 题型:未知
  • 难度:未知

在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B' 正好落在AB上,A'B'与AC相交于点D,那么    

  • 题型:未知
  • 难度:未知

在直角三角形ABC中,,是斜边AB的中点,过,连结;过,连结;过,…,如此继续,可以依次得到点,…,,分别记,,,…,的面积为,,,…,则.

 

  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点O在AB上, OM、ON分别交CA、CB于点P、Q,∠MON绕点O任意旋转.当时, 的值为     ;当时,      .(用含n的式子表示)

  • 题型:未知
  • 难度:未知

如图,Rt△ABC中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数(x>0)的图象上运动,那么点B在函数       (填函数解析式)的图象上运动.

  • 题型:未知
  • 难度:未知

如图1~4所示,每个图中的“7”字形是由若干个边长相等的正方形拼接而成,“7”字形的一个顶点落在反比例函数的图像上,另“7”字形有两个顶点落在轴上,一个顶点落在轴上.

(1)图1中的每一个小正方形的面积是         
(2)按照图1图2图3图4这样的规律拼接下去,第个图形中每一个小正方形的面积是           .(用含的代数式表示)

  • 题型:未知
  • 难度:未知

如图,A,B,C为⊙O上相邻的三个n等分点,,点E在上,EF为⊙O的直径,将⊙O沿EF折叠,使点A与A′重合,点B与B′重合,连接EB′,EC,EA′.设EB′=b,EC=c,EA′=p.现探究b,c,p三者的数量关系:发现当n=3时,p=b+c.请继续探究b,c,p三者的数量关系:当n=4时,p=     ;当n=12时,p=     
(参考数据:,)

  • 题型:未知
  • 难度:未知

初中数学相似多边形的性质填空题