优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学试题 / 解直角三角形
初中数学

如图①,抛物线轴交于点,与轴交于点,将直线绕点逆时针旋转,所得直线与轴交于点

(1)求直线的函数解析式;

(2)如图②,若点是直线上方抛物线上的一个动点

①当点到直线的距离最大时,求点的坐标和最大距离;

②当点到直线的距离为时,求的值.

来源:2019年山东省滨州市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线经过原点,顶点为

(1)求抛物线的函数解析式;

(2)设点为抛物线的对称轴上的一点,点在该抛物线上,当四边

为菱形时,求出点的坐标;

(3)在(2)的条件下,抛物线在第一象限的图象上是否存在一点,使得点到直线的距离与其到轴的距离相等?若存在,求出直线的函数解析式;若不存在,请说明理由.

来源:2019年四川省甘孜州中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线经过原点,顶点为

(1)求抛物线的函数解析式;

(2)设点为抛物线的对称轴上的一点,点在该抛物线上,当四边

为菱形时,求出点的坐标;

(3)在(2)的条件下,抛物线在第一象限的图象上是否存在一点,使得点到直线的距离与其到轴的距离相等?若存在,求出直线的函数解析式;若不存在,请说明理由.

来源:2019年四川省阿坝州中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,经过等边的顶点(圆心内),分别与的延长线交于点,连结于点

(1)求证:

(2)当时,求的长.

(3)设

①求关于的函数表达式;

②如图2,连结,若的面积是面积的10倍,求的值.

来源:2019年浙江省宁波市中考数学试卷
  • 题型:未知
  • 难度:未知

如图1,已知在平面直角坐标系中,四边形是矩形,点分别在轴和轴的正半轴上,连结的中点.

(1)求的长和点的坐标;

(2)如图2,是线段上的点,,点是线段上的一个动点,经过三点的抛物线交轴的正半轴于点,连结于点

①将沿所在的直线翻折,若点恰好落在上,求此时的长和点的坐标;

②以线段为边,在所在直线的右上方作等边,当动点从点运动到点时,点也随之运动,请直接写出点运动路径的长.

来源:2019年浙江省湖州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,已知锐角三角形内接于圆于点,连接

(1)若

①求证:

②当时,求面积的最大值.

(2)点在线段上,,连接,设是正数),若,求证:

来源:2019年浙江省杭州市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于点(点在点的左侧),交轴于点,点为抛物线的顶点,对称轴与轴交于点

(1)连结,点是线段上一动点(点不与端点重合),过点,交抛物线于点(点在对称轴的右侧),过点轴,垂足为,交于点,点是线段上一动点,当取得最大值时,求的最小值;

(2)在(1)中,当取得最大值,取得最小值时,把点向上平移个单位得到点,连结,把绕点顺时针旋转一定的角度,得到△,其中边交坐标轴于点.在旋转过程中,是否存在一点,使得?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由.

来源:2019年重庆市中考数学试卷(a卷)
  • 题型:未知
  • 难度:未知

如图,的直径,两点在的延长线上,上的点,且,延长,使得,设

(1)求证:

(2)求的长;

(3)若点三点确定的圆上,求的长.

来源:2019年云南省中考数学试卷
  • 题型:未知
  • 难度:未知

问题提出

(1)如图①,在中,,点关于所在直线的对称点为,则的长度为  

问题探究

(2)如图②,半圆的直径的中点,点上,且上的动点,试求的最小值.

问题解决

(3)如图③,扇形花坛的半径为.根据工程需要.现想在上选点,在边上选点,在边上选点,用装饰灯带在花坛内的地面上围成一个,使晚上点亮时,花坛中的花卉依然赏心悦目.为了既节省材料,又美观大方,需使得灯带的长度最短,并且用长度最短的灯带围成的为等腰三角形.试求的值最小时的等腰的面积.(安装损耗忽略不计)

来源:2018年陕西省中考数学试卷(副卷)
  • 题型:未知
  • 难度:未知

中,分别是两边的中点,如果上的所有点都在的内部或边上,则称的中内弧.例如,图1中的一条中内弧.

(1)如图2,在中,分别是的中点,画出的最长的中内弧,并直接写出此时的长;

(2)在平面直角坐标系中,已知点,在中,分别是的中点.

①若,求的中内弧所在圆的圆心的纵坐标的取值范围;

②若在中存在一条中内弧,使得所在圆的圆心的内部或边上,直接写出的取值范围.

来源:2019年北京市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2.则∠BCD=      °,cos∠MCN=    

  • 题型:未知
  • 难度:未知

如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接AE,则sin∠AED=( )

A. B. C. D.
  • 题型:未知
  • 难度:未知

若一个三角形的三个顶点均在一个图形的不同的边上,则称此三角形为该图形的内接三角形.

(1)在图①中画出△ABC的一个内接直角三角形;
(2)如图②,已知△ABC中,∠BAC=60°,∠B=45°,AB=8,AD为BC边上的高,探究以D为一个顶点作△ABC的内接三角形,其周长是否存在最小值?若存在,请求出最小值;若不存在,请说明理由;
(3)如图③,△ABC为等腰直角三角形,∠C=90°,AC=6,试探究:△ABC的内接等腰直角三角形的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.

  • 题型:未知
  • 难度:未知

先阅读短文,然后回答短文后面所给出的问题:
对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定 表示这三个数的平均数,表示这三个数中的最小的数,表示这三个数中最大的数.例如:
(1)请填空:      ;若,则     
(2)若,求的取值范围;
(3)若,求的值.

  • 题型:未知
  • 难度:未知

某地因持续高温干旱,村民饮水困难,镇政府组织村民组成水源行动小组到村镇周边找水。某村民在山洞里发现了暗河(如图所示),经勘察,在山洞的西面有一条南北走向的公路连接着两村庄,山洞位于村庄南偏东方向,且位于村庄南偏东方向。为方便两村庄的村民取水,准备从山洞处向公路紧急修建一条最近的简易公路,现已知两村庄相距6千米。

(1)求这条最近的简易公路的长(精确到0.1千米)?
(2)现由甲、乙两施工队共同合作修建这条公路,已知甲施工队修建2千米后,由乙施工队继续修建,乙施工队每天施工的速度是甲施工队每天施工速度的1.6倍,8天后,公路正式通车。求甲、乙两施工队每天修建公路多少千米?
(参考数据:

  • 题型:未知
  • 难度:未知

初中数学解直角三角形试题