在一个不透明的盒子中装有 个除颜色外完全相同的球,其中只有6个白球.若每次将球充分搅匀后,任意摸出1个球记下颜色后再放回盒子,通过大量重复试验后,发现摸到白球的频率稳定在 左右,则 的值约为 .
在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有 个.
一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为 个.
一个不透明的口袋中有红球和黑球共25个,这些球除颜色外都相同.进行大量的摸球试验(每次摸出1个球)后,发现摸到黑球的频率在0.6附近摆动,据此可以估计黑球为 个.
在一个不透明的小盒中装有 张除颜色外其它完全相同的卡片,这 张卡片中两面均为红色的只有3张.搅匀后,从小盒中任意抽出一张卡片记下颜色,再放回小盒中.通过大量重复抽取卡片实验,发现抽到两面均为红色卡片的频率稳定在0.3附近,可推算出 的值约为 .
如图,这是一幅长为 ,宽为 的长方形世界杯宣传画,为测量宣传画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宣传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4附近,由此可估计宣传画上世界杯图案的面积约为 .
某鱼塘里养了1600条鲤鱼、若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率约为 .
在一个不透明的盒子中装有 个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出 的值大约是 .
某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:
抽取瓷砖数 |
100 |
300 |
400 |
600 |
1000 |
2000 |
3000 |
合格品数 |
96 |
282 |
382 |
570 |
949 |
1906 |
2850 |
合格品频率 |
0.960 |
0.940 |
0.955 |
0.950 |
0.949 |
0.953 |
0.950 |
则这个厂生产的瓷砖是合格品的概率估计值是 .(精确到
黔东南下司“蓝莓谷”以盛产“优质蓝莓”而吸引来自四面八方的游客,某果农今年的蓝莓得到了丰收,为了了解自家蓝莓的质量,随机从种植园中抽取适量蓝莓进行检测,发现在多次重复的抽取检测中“优质蓝莓”出现的频率逐渐稳定在0.7,该果农今年的蓝莓总产量约为 ,由此估计该果农今年的“优质蓝莓”产量约是 .
袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 个.
现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为 .
柳州市某校的生物兴趣小组在老师的指导下进行了多项有意义的生物研究并取得成果.下面是这个兴趣小组在相同的试验条件下,对某植物种子发芽率进行研究时所得到的数据:
种子数 |
30 |
75 |
130 |
210 |
480 |
856 |
1250 |
2300 |
发芽数 |
28 |
72 |
125 |
200 |
457 |
814 |
1187 |
2185 |
发芽频率 |
0.9333 |
0.9600 |
0.9615 |
0.9524 |
0.9521 |
0.9509 |
0.9496 |
0.9500 |
依据上面的数据可以估计,这种植物种子在该试验条件下发芽的概率约是 (结果精确到 .
一个猜想是否正确,科学家们要经过反复的试验论证.下表是几位科学家“掷硬币”的实验数据:
实验者 |
德 摩根 |
蒲丰 |
费勒 |
皮尔逊 |
罗曼诺夫斯基 |
掷币次数 |
6140 |
4040 |
10000 |
36000 |
80640 |
出现“正面朝上”的次数 |
3109 |
2048 |
4979 |
18031 |
39699 |
频率 |
0.506 |
0.507 |
0.498 |
0.501 |
0.492 |
请根据以上数据,估计硬币出现“正面朝上”的概率为 (精确到 .
试题篮
()