如图,二次函数
的图象,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C14. 若P(27,m)在第14段图象C14上,则m=.
矩形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置.点A1,A2,A3,A4…和点C1,C2,C3,C4…,分别在直线
(k>0)和x轴上,若点B1(1,2),B2(3,4),且满足
,则直线
的解析式为,点
的坐标为,点
的坐标为_.
如图,直角三角形ABO放置在平面直角坐标系中,已知斜边OA在x轴正半轴上,且OA=4,AB=2,将该三角形绕着点O逆时针旋转120°后点B的对应点恰好落在一反比例函数图像上,则该反比例函数的解析式为.
如图,已知∠AOB=α,在射线OA、OB上分别取点OA1=OB1,连接A1B1,在B1A1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2…按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠An+1BnBn+1=θn,
则(1)θ1=, (2)θn=.
如图,在Rt△ABC中,∠ABC = 90
, AB =" 8cm" , BC =" 6cm" , 分别以A,C为圆心,以
的长为半径作圆, 将 Rt△ABC截去两个扇形,则剩余(阴影)部分的面积为cm
(结果保留π)
如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:
①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+
其中正确的序号是______________
如图,直线l:
,点A1坐标为(0,1),过点A1作y轴的垂线交直线l于点B1,以原点O 为圆心,OB1长为半径画弧交y一轴于点A2;再过点A2作y轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交y轴于点A3,…,按此做法进行下去,点A4的坐标为(_______,_______);点An的坐标为(_______,_______).
如图,□ABCD中,AC⊥AB.
,E是CD上的点,
.点P从D点出发,以1cm/s的速度沿DA运动至A点停止.则当△EDP为等腰三角形时,点P的运动时间为 .
如图,在反比例函数
(x > 0)的图象上有点A1,A2,A3,…,An-1,An,这些点的横坐标分别是1,2,3,…,n -1,n时,点A2的坐标是__________;过点A1作x轴的垂线,垂足为B1,再过点A2作A2 P1⊥A1 B1于点P1,以点P1、A1、A2为顶点的△P1A1A2的面积记为S1,按照以上方法继续作图,可以得到△P2 A2A3,…,△P n-1 An-1 An,其面积分别记为S2,…,Sn-1,则S1+ S2+…+ Sn=________.
如图,已知直线y=x+4与两坐标轴分别交于A、B两点,⊙C的圆心坐标为 (2,O),半径为2,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值和最大值分别是 .
已知菱形ABCD的两条对角线的长分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值= .
试题篮
()