如图,薄壁容器的底面积为 ,物体 的体积为 ,轻质弹簧的一端固定在容器底部,另一端与 连接。当容器中的水深为 时,弹簧的长度恰好等于原长,物体 有一半的体积浸在水中。下列判断错误的是
A.水对容器底部的压力
B.物体 的密度 的求解思路是
C.若在 上加放重为 的物体 , 恰好浸没。此时弹簧对 的支持力
D.若向容器中缓慢加水直到 完全浸没 弹簧对 的拉力
如图甲所示,弹簧测力计一端固定,另一端竖直悬挂一底面积为 的长方体合金块(不吸水),浸没在装有水的容器中,静止后合金块上表面距水面 。容器底部有一个由阀门控制的出水口,打开阀门,使水缓慢流出,放水过程中合金始终不与容器底部接触,弹簧测力计示数随放水时间变化的规律如图乙所示(已知 , 取 ,水的流速对压强的影响忽略不计)。求:
(1)合金块露出水面前容器中水面下降的平均速度;
(2)合金块浸没在水中所受浮力的大小;
(3)合金块的密度;
(4)打开阀门前合金块下表面受到水的压强。
用弹簧测力计在空气中称一实心正方体重力,测力计的示数为 ;把物体一半体积浸入在水中时,测力计的示数如图所示,此时物体所受浮力为 ,当把物体从弹簧测力计上取下,放入水中静止时,物体所处的状态是 (选填“漂浮”、“悬浮”或“下沉” 。
如图所示,一个装有水的圆柱形容器放在水平桌面上,容器中的水深 。某同学将一个实心物体挂在弹簧测力计上,在空气中称得物体的重力 ,再将物体缓慢浸没在容器的水中,物体静止时与容器没有接触,且容器中的水没有溢出,弹簧测力计的示数 . 求:
(1)物体放入水中之前,容器底部受到水的压强 ;
(2)物体浸没时受到水的浮力 ;
(3)物体的密度 。
如图是探究“浮力的大小与哪些因素有关”的实验步骤之一,弹簧测力计的示数为 ;若石块重 ,则它所受浮力为 。
如图甲所示,是某打捞船所用起重装置的示意图。在某次打捞作业中,物体在不可伸长的轻绳作用下,从水底以 的速度竖直向上匀速运动至离开水面高度 的位置,此打捞过程中物体受到轻绳的拉力 随时间 变化的图像如图乙所示,物体离开水面后匀速上升 的过程中,与电动机连接的绳子所受的拉力为 .已知水的密度为 ,取 。不计水和空气的阻力。求
(1)物体的体积及浸没在水中所受的浮力。
(2)物体的质量和密度。
(3)水底的深度及水对水底的压强。
(4)物体离开水面后匀速上升 的过程中,滑轮组的机械效率(结果保留一位小数)。
安安和康康在实验室里发现了一个可爱的卡通小玩偶,如图甲所示.他们选择不同的方法测量它的密度.
(1)康康用天平(砝码)、量筒、细线和水测量小玩偶的密度.
①当天平右盘所加砝码和游码位置如图乙所示时,天平在水平位置平衡,则小玩偶的质量为 ;
②在量筒中装有适量的水,小玩偶放入量筒前后水面变化的情况如图丙所示,则小玩偶的体积为 ;
③小玩偶的密度为 .
(2)安安利用弹簧则力计、烧杯,细线和水,用另一种方法量小玩偶的密度,如图丁所示,她进行了如下操作
①在弹簧测力计下悬挂小玩偶,弹簧测力计静止时示数为 .
②将小玩偶浸没水中,静止时读出弹簧测力计示数为 ,她用 、 和 ,计算出小玩偶的密度,如若小玩偶未完全浸入水中,那么安安所测得的小玩偶密度将会偏 (选填“大”或“小” .
开原以盛产大蒜闻名,小越想知道开原大蒜的密度,他将一些蒜瓣带到学校测量。
(1)他将天平放在水平桌面上,把游码放到标尺左端零刻度线处,指针静止时指在分度盘右侧,他应向 (填“左”或“右” 调节平衡螺母,使天平平衡。
(2)小越测得一个蒜瓣的质量如图甲所示为 。
(3)他将蒜瓣放入装有 水的量筒中,水面上升到图乙所示的位置,蒜瓣的体积为 ,密度为 。
(4)小越对实验进行评估,觉得蒜瓣太小,测得体积的误差较大,导致测得的密度不准。他设计了下列解决方案,其中合理的是 (填字母)。
.换量程更大的量筒测量
.测多个蒜瓣的总质量和总体积
.换分度值更大的量筒测量
(5)同组的小爱同学测得一个装饰球 的密度为 ,他们想利用它测量一杯橙汁的密度,发现装饰球 在橙汁中漂浮,于是选取了测力计、细线和一个金属块 ,设计了如图丙所示的实验过程:
①用测力计测出装饰球 的重力为 ;
②将装饰球 和金属块 用细线拴好挂在测力计下,并将金属块 浸没在橙汁中静止,读出测力计的示数为 ;
③将装饰球 和金属块 都浸没在橙汁中静止(不碰到杯底),读出测力计的示数为 .根据②、③两次测力计示数差可知 (填“装饰球 ”或“金属块 ” 受到的浮力。橙汁密度的表达式 (用 和所测物理量字母表示)。
小明用天平和量筒测量一个外形不规则且不溶于水的固体的密度(已知该固体的密度小于水的密度)。
(1)测量过程如下:
①将天平放在水平桌面上,把游码调至标尺左端的零刻度线处,调节平衡螺母,使指针指在分度盘的 ,天平平衡。
②把该固体放在天平左盘,平衡时右盘砝码和游码在标尺上的位置如图甲所示,该固体的质量为 。
③用量筒测该固体的体积时,用细线将小金属球绑在固体下方(具体测量过程如图乙所示)。该固体的体积为 。
④该固体的密度为 。
(2)实验结束后,小明没有利用天平和量筒,用弹簧测力计,细线、烧杯和足量的水又测出了小金属球的密度,具体过程如下:
①用细线系着小金属球,将其挂在弹簧测力计下,测出小金属球的重力 ;
②在烧杯中装入适量的水,将挂在测力计下的小金属球完全浸没在水中(小金属球没有碰到烧杯底和侧壁),读出弹簧测力计示数 ;
③该小金属的体积 (用字母表示,水的密度为 ;
④该小金属球的密度 (用字母表示,水的密度为 。
弹簧测力计通过细线吊着一个金属块,静止时弹簧测力计的示数如图甲所示,则金属块的重力是 .如图乙所示,将金属块浸没在水中,静止时弹簧测力计的示数是 .则金属块在水中受到的浮力是 。
如图是探究“影响浮力大小的因素”的实验过程及数据。
(1)如图甲,物体重 ;
(2)如图乙,把物体浸没在水中时,弹簧测力计的示数为 ,物体受浮力的大小为 ;
(3)分析甲、乙、丙三图所示实验数据可得:物体受浮力的大小与 有关;
(4)若要探究物体所受浮力大小与物体的密度是否有关,应选择图中 (填字母)两个物体,并将它们浸没在同种液体中,测出其所受浮力的大小来进行比较。
弹簧测力计下悬挂一个 的重物,把重物完全浸没在水中时,弹簧测力计的示数如图所示, 取 。
(1)弹簧测力计的示数为 。
(2)重物完全浸没在水中时受到的浮力为 。
(3)重物的密度为 。
如图所示,将一长方体物体浸没在装有足够深水的容器中恰好处于悬浮状态,它的上表面受到的压力为 ,下表面受到的压力为 ,则该物体受到的浮力大小为 ;如将物体再下沉 ,则它受到的浮力大小为 。
如图所示是某自动蓄水箱的结构示意图。 是水箱中的实心圆柱体,体积为 ,密度为 ,用细绳悬挂在水箱顶部的传感开关 上。当传感开关 受到竖直向下的拉力大于 时闭合,与 连接的水泵(图中未画出)向水箱注水:当拉力等于 时, 断开,水泵停止注水。细绳的质量忽略不计,求:
(1) 的质量为 。
(2)停止注水时,水箱水位高为 ,水箱底部受到水的压强为 。
(3)停止注水时, 受到的浮力为 ,此时圆柱体 排开水的体积为多少?
试题篮
()