期中备考总动员高三数学模拟卷【江苏】2
如图,茎叶图记录了甲、乙两组各3名同学在期末考试中的数学成绩,则方差较小的那组同学成绩的方差为_______.
若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)
①若直线,则在平面内,一定不存在与直线平行的直线.
②若直线,则在平面内,一定存在无数条直线与直线垂直.
③若直线,则在平面内,不一定存在与直线垂直的直线.
④若直线,则在平面内,一定存在与直线垂直的直线.
已知椭圆,点依次为其左顶点、下顶点、上顶点和右焦点,若直线 与直线 的交点恰在椭圆的右准线上,则椭圆的离心率为______.
如图,在多面体中,四边形是菱形,相交于点,,,平面平面,,点为的中点.
(1)求证:直线平面;
(2)求证:直线平面.
(本小题满分14分)某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900m2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1m,三块矩形区域的前、后与内墙各保留 1m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留 3m 宽的通道,如图.设矩形温室的室内长为(m),三块种植植物的矩形区域的总面积为(m2).
(1)求关于的函数关系式;
(2)求的最大值.
(本小题满分16分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.
(1)求椭圆的标准方程;
(2)过点作垂直于轴的直线,设直线与定直线交于点,试探索当变化时,直线是否过定点?
已知数列{}中,,且对任意正整数都成立,数列{}的前n项和为Sn。
(1)若,且,求a;
(2)是否存在实数k,使数列{}是公比不为1的等比数列,且任意相邻三项按某顺序排列后成等差数列,若存在,求出所有k值,若不存在,请说明理由;
(3)若。
(本小题满分16分)己知函数
(1)若 ,求函数 的单调递减区间;
(2)若关于x的不等式 恒成立,求整数 a的最小值:
(3)若 ,正实数 满足 ,证明:
选修4-1:几何证明选讲(本小题满分10分)
如图,0是△ABC的外接圆,AB = AC,延长BC到点D,使得CD = AC,连结AD交O于点E.求证:BE平分ABC
(选修4-4:坐标系与参数方程)
已知曲线C1的极坐标方程为,以极点为原点,极轴为x轴的非负半轴建立平面直角坐标系,曲线C2的参数方程为,求曲线C1与曲线C2交点的直角坐标
(本小题满分10分)已知四棱锥的底面为直角梯形,底面,且是的中点.
(1)证明:平面平面;
(2)求与所成角的余弦值;
(3)求平面与平面所成二面角(锐角)的余弦值.