期中备考总动员高三理数学模拟卷【新课标2】1
已知等轴双曲线与抛物线有一个共同的焦点,则双曲线的方程为( )
A. | B. | C. | D. |
某几何体的三视图如图所示,其中正视图是两底边长分别为1,2的直角梯形,俯视图是斜边为3的等腰直角三角形,该几何体的体积是( )
A.1 | B.2 | C. | D. |
【原创】如图,在中,已知点D在BC边上,,,,则的长为( ).
A. | B. | C. | D. |
在直三棱柱中,若,,,为中点,点为中点,在线段上,且,则异面直线与所成角的正弦值 .
过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为、.若,则双曲线的离心率是 .
【改编】(本大题12分)已知数列是等差数列,其前项和为,,数列的前项和为,数列满足.
(Ⅰ)求和;
(Ⅱ)求数列的前项和.
(本小题满分12分)如图1,在中,,分别是上的点,且.将沿折起到的位置,使,如图2.
(Ⅰ)是的中点,求与平面所成角的大小;
(Ⅱ)求二面角的正切值.
(本小题满分12分)在年月,某市进行了“居民幸福度”的调查,某师大附中学生会组织部分同学,用“分制”随机调查“狮子山”社区人们的幸福度.现从调查人群中随机抽取名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).
(1)若幸福度不低于分,则称该人的幸福度为“极幸福”,求从这人中随机选取人,至
多有人是“极幸福”的概率;
(2)以这人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选人,记
表示抽到“极幸福”的人数,求的分布列及数学期望.
(本小题满分12分)在平面直角坐标系中,已知椭圆:的离心率,直线过椭圆的右焦点,且交椭圆于,两点.
(1)求椭圆的标准方程;
(2)已知点,连结,过点作垂直于轴的直线,设直线与直线交于点,试探索当变化时,是否存在一条定直线,使得点恒在直线上?若存在,请求出直线的方程;若不存在,请说明理由.
如图,是△的外接圆,D是的中点,BD交AC于E.
(Ⅰ)求证:;
(Ⅱ)若,O到AC的距离为1,求⊙O的半径
(本小题满分10分)选修4-4:坐标系与参数方程
已知椭圆C:,直线(t为参数).
(Ⅰ)写出椭圆C的参数方程及直线的普通方程;
(Ⅱ)设,若椭圆C上的点P满足到点A的距离与其到直线的距离相等,求点P的坐标.