北京市海淀区九年级一模数学试卷
2015年北京市实施能源清洁化战略,全市燃煤总量减少到15 000万吨左右,将15 000用科学记数法表示应为
A. | B. | C. | D. |
某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为
A. | B. | C. | D. |
如图,直线a与直线b平行,将三角板的直角顶点放在直线a上,若∠1=40°,则∠2等于
A.40° | B.50° | C.60° | D.140° |
如图,已知∠AOB.小明按如下步骤作图:
(1)以点O为圆心,适当长为半径画弧,交OA于D,交OB于点E.
(2)分别以D,E为圆心,大于DE的长为半径画弧,两弧在∠AOB的内部相交于点C.
(3)画射线OC.
根据上述作图步骤,下列结论正确的是
A.射线OC是的平分线
B.线段DE平分线段OC
C.点O和点C关于直线DE对称
D.OE=CE
某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是
A.98,95 | B.98,98 |
C.95,98 | D.95,95 |
甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程(单位:千米)与时间(单位:分钟)的函数关系的图象如图所示,则图中a等于
A.1.2 | B.2 | C.2.4 | D.6 |
如图,⊙O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为
A.6 | B. | C. | D.3 |
小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如左下图所示.小明选择的物体可能是
写出一个函数(),使它的图象与反比例函数的图象有公共点,这个函数的解析式为___________.
某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:
摸球的次数 |
100 |
200 |
300 |
400 |
500 |
600 |
摸到白球的次数 |
58 |
118 |
189 |
237 |
302 |
359 |
摸到白球的频率 |
0.58 |
0.59 |
0.63 |
0.593 |
0.604 |
0.598 |
从这个袋中随机摸出一个球,是白球的概率约为 .(结果精确到0.1)
如图,点C为线段AB上一点,将线段CB绕点C旋转,得到线段CD,若,,,则的长为__________.
在研究了平行四边形的相关内容后,老师提出这样一个问题:
“四边形ABCD 中,AD∥BC,请添加一个条件,使得四边形ABCD是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB="DC”" .你同意 的观点,理由是 .
若三角形的某一边长等于其外接圆半径,则将此三角形称为等径三角形,该边所对的角称为等径角.已知△ABC是等径三角形,则等径角的度数为 .
如图,点A,B,C,D在同一条直线上,AB=FC,∠A=∠F,∠EBC=∠FCB.
求证: BE=CD.
已知关于的方程.
(1)求证:方程总有两个不相等的实数根;
(2)若方程的两个实数根都是整数,求整数的值
列方程或方程组解应用题:
为了响应学校提出的“节能减排,低碳生活”的倡议,班会课上小李建议每位同学都践行“双面打印,节约用纸”.他举了一个实际例子:打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,总质量为160克.已知每页薄型纸比厚型纸轻0.8克,求例子中的A4厚型纸每页的质量.(墨的质量忽略不计)
如图,在□中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.
(1)求证:四边形ABCD是矩形;
(2)若AB=14,DE=8,求sin∠AEB的值.
根据某研究中心公布的近几年中国互联网络发展状况统计报告的部分相关数据,绘制的统计图表如下:
根据以上信息解答下列问题:
(1)直接写出扇形统计图中m的值;
(2)从2011年到2014年,中国网民人数每年增长的人数近似相等,估算2015年中国网民的人数约为 亿;
(3)据某市统计数据显示,2014年末全市常住人口为476.6万人,其中网民数约为210万人.若2014年该市的网民学历结构与2014年的中国网民学历结构基本相同,请你估算2014年末该市网民学历是大专的约有 万人.
图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.
(1)求证:OD⊥CE;
(2)若DF=1, DC=3,求AE的长.
阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).
图1 图2 图3
请回答:BC+DE的值为_______.
参考小明思考问题的方法,解决问题:
如图3,已知□ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.
在平面直角坐标系xOy中,抛物线与轴交于点A,顶点为点B,点C与点A关于抛物线的对称轴对称.
(1)求直线BC的解析式;
(2)点D在抛物线上,且点D的横坐标为4.将抛物线在点A,D之间的部分(包含点A,D)记为图象G,若图象G向下平移()个单位后与直线BC只有一个公共点,求的取值范围.
在菱形中,,点是对角线上一点,连接,,将线段绕点逆时针旋转并延长得到射线,交的延长线于点.
(1)依题意补全图形;
(2)求证:;
(3)用等式表示线段,,之间的数量关系:_____________________________.