福建省宁德市普通高中毕业班第二次质量检查文科数学试卷
若,则“”是“”的
A.充分不必要条件 | B.必要不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
某全日制大学共有学生5400人,其中专科生有1500人,本科生有3000人,研究生有900人.现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为180人,则应在专科生、本科生与研究生这三类学生中分别抽取
A.55人,80人,45人 | B.40人,100人,40人 |
C.60人,60人,60人 | D.50人,100人,30人 |
设m,n是两条不同的直线,α,β是两个不同的平面,下列正确的是
A.若m∥α,nα,则m∥n | B.若m∥α,m∥β,则α∥β |
C.若m∥α,α⊥β,则m⊥β | D.若m∥n,m⊥α,则n⊥α |
运行如图所示的程序,若输出的值为1,则可输入的个数为
A. | B. |
C. | D. |
已知点是所在平面上一点,边的中点为,若,
则与的面积比为
A. | B. | C. | D. |
为坐标原点,为曲线上的两个不同点,若,则直线 与圆的位置关系是
A.相交 | B.相离 | C.相交或相切 | D.相切或相离 |
已知函数,且恒成立.给出下列结论:
①函数在上单调递增;
②将函数的图象向左平移个单位,所得图象对应的函数为偶函数;
③若,则函数有且只有一个零点.
其中正确的结论是 .(写出所有正确结论的序号)
(本小题满分12分)已知等比数列的前项和.
(1)求实数的值和的通项公式;
(2)若数列满足,,求.
(本小题满分12分)某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为,,,,.
(1)求频率分布直方图中的值;
(2)从统计学的角度说明学校是否需要推迟5分钟上课;
(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在
上的概率.
(本小题满分12分)已知函数在一个周期内的图象如图所示,其中,.
(1)求函数的解析式;
(2)在中,角的对边分别是,且,求的面积.
(本小题满分12分)如图四棱锥中,平面平面,,,且,.
(1)求三棱锥的体积;
(2)问:棱上是否存在点,使得平面?若存在,求出的值,并加以证明;若不存在,请说明理由.
(本小题满分12分)已知点,动点满足直线与直线的斜率之积为.
(1)求动点的轨迹的方程;
(2)设过点的直线与曲线交于点,记点到直线的距离为.
①求的值;
②过点作直线的垂线交直线于点,求证:直线平分线段.