人教版初中数学八年级第十八章 本章检测卷
在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是( )
A.∠D=60° |
B.∠A=120° |
C.∠C+∠D=180° |
D.∠C+∠A=180° |
菱形的两条对角线长分别是6和8,则此菱形的边长是( )
A.10 |
B.8 |
C.6 |
D.5 |
关于四边形ABCD:①两组对边分别平行;②两组对边分别相等;③有一组对边平行且相等;④对角线AC和BD相等.以上四个条件中可以判定四边形ABCD是平行四边形的有( )
A.1个 |
B.2个 |
C.3个 |
D.4个 |
如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长为( )
A.4
B.6
C.8
D.10
如图,D、E、F分别是△ABC各边的中点,中线AD与中位线EF的关系是( )
A.互相平分
B.互相垂直
C.相等
D.不确定
如图,将等边△ABC沿射线BC向右平移到△DCE的位置,连接AD、BD,则下列结论:①AD=BC;②BD、AC互相平分;③四边形ACED是菱形.其中正确的个数是( )
A.0
B.1
C.2
D.3
如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )
A. |
B. |
C. |
D. |
如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,若AB=6,BC=9,则BF的长为( )
A.4 |
B. |
C.4.5 |
D.5 |
如图,将一个长为10cm,宽为8cm的矩形纸片横向对折,再纵向对折后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )
A.10cm2 |
B.20cm2 |
C.40cm2 |
D.80cm2 |
如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
A.1 |
B. |
C. |
D. |
如图是测量玻璃管口径的量具ABC(示意图),AB的长为30mm,AC被分为60等份,如果玻璃管口径DE正好对着测量具上第30份处(DE∥AB),那么玻璃管口径的长是________mm.
如图所示,四边形ABCD是矩形,AB=4cm,∠CBD︰∠ABD=2︰1,则AC=________cm.
如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,当菱形的两条对角线的长分别为6和8时,阴影部分的面积为________.
如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于________.
如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要使该四边形成为矩形,只需再加上的一个条件是________.(填上你认为正确的一个答案即可)
如图所示,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转90°后与△CBP′重合,若PB=3,则PP′=________.
如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E,若△CDE的周长为10,则平行四边形ABCD的周长为________.
如图,四边形ABCD是矩形(AD>AB),点E在BC上,且AE=AD,DF⊥AE,垂足为F.请探求DF与AB有何数量关系,写出你所得到的结论并给予证明.
如图所示,□ABCD中,DE平分∠ADC交AB于E,EF∥AD交DC于F.
(1)求证:四边形AEFD是菱形;
(2)如果∠A=60°,AD=5,求菱形AEFD的面积.
如图,矩形ABCD的对角线相交于点O,DE∥CA,AE∥BD.
(1)求证:四边形AODE是菱形;
(2)若将题设中“矩形ABCD”这一条件改为“菱形ABCD”,其余条件不变,则四边形AODE是________,请说明理由.