吉林省长春市朝阳区中考一模数学试卷
如图,直线a与直线b被直线c所截,b⊥c,垂足为点A,∠1=70°.若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )
A.70° | B.50° | C.30° | D.20° |
如图,AB是⊙O的直径,点C在圆周上,点P是线段OB上任意一点,连结AC、CP.若∠BAC=35°,则∠APC的度数不可能是( )
A.90° B.75° C.60° D.50°
如图,在平面直角坐标系中,点A(m,2)在第一象限.若点A关于y轴的对称点B在反比例函数y=-的图象上,则m的值为( )
A.-3 | B.3 | C.6 | D.-6 |
将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k≠0)与正方形ABCD有公共点,则k的取值范围是( )
A.k≤2 | B.k≥ | C.≤k≤2 | D.<k<2 |
甲、乙二人一起加工零件.甲平均每小时加工a个零件,加工2小时;乙平均每小时加工b个零件,加工3小时.甲、乙二人共加工零件 个.
如图,在△ABC中,∠ACB=80°,∠ABC=60°.按以下步骤作图:①以点A为圆心,小于AC的长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;③作射线AG交BC于点D.则∠ADB的度数为 .
如图,在平行四边形ABCD中,AC与BD交于点O,点E是BC边的中点,OE=1,则AB的长是 .
如图,正六边形ABCDEF内接于⊙O,连结对角线AC、AE.若⊙O的半径为2,则图中阴影部分图形的面积和是 (结果保留π).
如图,在平面直角坐标系中,抛物线y=(x-2)2与x轴交于点A,与y轴交于点B.过点B作BC∥x轴,交抛物线于点C,过点A作AD∥y轴,交BC于点D,点P在BC下方的抛物线上(P不与B,C重合),连结PC,PD,则△PCD面积的最大值是 .
甲、乙两个不透明的口袋中各装有3个小球,它们除所标数字不同外其余均相同.甲口袋中小球分别标有数字1,5,7,乙口袋中小球分别标有数字0,1,2.现从甲口袋中随机摸出1个小球,记下标号;再从乙口袋中随机摸出1个小球,记下标号.用画树状图(或列表)的方法,求两次摸出小球的标号之和是偶数的概率.
某市为了在冬季下雪时更好的清扫路面积雪,新购进一批清雪车.每辆新清雪车比每辆旧清雪车每小时多清扫路面2km,每辆新清雪车清扫路面35km与每辆旧清雪车清扫路面25km所用的时间相同,求每辆旧清雪车每小时清扫路面多少km?
如图,甲楼AB的高度为35m,经测得,甲楼的底端B处与乙楼的底端D处相距105m,从甲楼顶部A处看乙楼顶部C处的仰角∠CAE的度数为25°.求乙楼CD的高度(结果精确到0.1m).[参考数据:sin25°=0.42,cos25°=0.91,tan25°=0.47].
我国从2011年1月1日起在公共场所实行“禁烟”,到2015年1月1日,实行了四年.某社区为进一步巩固“禁烟”成果,开展了“你支持哪种戒烟方式”的问卷调查,随机抽样调查了该社区部分居民的意见,并将调查结果整理后绘制成如下统计图.
(1)该社区一共随机调查了多少人;
(2)此次抽样调查的居民中,支持“替代品戒烟”的居民有 人,并补全条形统计图;
(3)若该社区共有居民18000人,则该社区大约有多少人支持“警示戒烟”这种方式.
如图,在正方形ABCD中,以AD为边作等边三角形ADE,点E在正方形内部,将AB绕着点A顺时针旋转30°得到线段AF,连结EF.求证:四边形ADEF是菱形.
王先生开轿车从A地出发,前往B地,路过服务区休息一段时间后,继续以原速度行驶,到达B地后,又休息了一段时间,然后开轿车按原路返回A地,速度是原来的1.2倍.王先生距离A地的路程y(km)与行驶的时间x(h)之间的函数图象如图所示.
(1)王先生开轿车从A地行驶到B地的途中,休息了 h;
(2)求王先生开轿车从B地返回A地时y与x之间的函数关系式(不要求写出自变量x的取值范围);
(3)王先生从B地返回A地的途中,再次经过从A地到B地时休息的服务区,求此时的x的值.
如图,在矩形ABCD中,AB=3cm,BC=4cm,点O是对角线AC的中点,连结BO.动点P,Q从点B同时出发,点P沿B→C→B以2cm/s的速度运动到终点B.点Q沿B→A以1cm/s的速度运动到终点A.以BP、BQ为边作矩形BPMQ(点M不与点A重合).设矩形BPMQ与△OBC重叠部分图形的面积为y(cm2),点P的运动时间为x(s).
(1)当点M在AC上时,求x的值;
(2)直接写出点O在矩形BPMQ内部时x的取值范围;
(3)当矩形BPMQ与△OBC重叠部分的图形是四边形时,求y与x之间的函数关系式.
(4)直接写出直线AM将矩形ABCD的面积分成1:3的两部分时x的值.
探究:如图①,△ABC是等腰直角三角形,∠ACB=90°,AC=BC.点D在边AB上(D不与A,B重合),连结CD,过点C作CE⊥CD,且CE=CD,连结DE、AE.
求证:△BCD≌△ACE.
应用:如图②,在图①的基础上,点D在BA的延长线上,其他条件不变.若AD=AB,AB=4,求DE的长.