优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学 / 试卷选题

中考真题分项汇编 第2期 专题12 探索性问题

如图,在3x3的正方形网格中有四个格点A, B, C, D,,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是(     )

A.A点 B.B点 C.C点 D.D点
来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

已知一个函数图像经过(1. -4) (2. -2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是(     )
A.正比例函数      B.一次函数         c. 反比例函数      D.二次函数

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,从一块半径是1m的圆形铁皮(⊙O)上剪出一个圆心角为60°的扇形(点A,B,C在⊙O上),将剪下的扇形围成一个圆锥,则这个圆锥的底面圆的半径是( )

A.m B.m C.m D.1m
来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,则点B2015的坐标是( )

A.( B.( C.( D.(
来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

数学兴趣小组开展以下折纸活动:(1)对折矩形ABCD,使AD和BC重合,得到折痕EF,把纸片展平;
(2)再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN.
观察,探究可以得到∠ABM的度数是( )

A.25° B.30° C.36° D.45°
来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,已知点A是双曲线在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为( )

A. B. C. D.
来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

已知⊙P的半径为2,圆心在函数的图象上运动,当⊙P与坐标轴相切于点D时,则符合条件的点D的个数为( )

A.0 B.1 C.2 D.4
来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

已知一组数据1,2,3,…,n(从左往右数,第1个数是1,第2个数是2,第3个数是3,依此类推,第n个数是n).设这组数据的各数之和是s,中位数是k,则s=         (用只含有k的代数式表示).

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

一个工件,外部是圆柱体,内部凹槽是正方体,如图所示。其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为2cm,则正方体的体积为         cm3

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:①可以拼成等腰直角三角形;
②可以拼成对角互补的四边形;
③可以拼成五边形;
④可以拼成六边形.
其中所有正确结论的序号是           

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

我们把平面内与四边形各边端点构成的三角形都是等腰三角形的点叫做这个四边形的腰点(如矩形的对角线交点是矩形的一个腰点),则正方形的腰点共有      个.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

谢尔宾斯基地毯,最早是由波兰数学家谢尔宾斯基制作出来的:把一个正三角形分成全等的4个小正三角形,挖去中间的一个小三角形;对剩下的3个小正三角形再分别重复以上做法…将这种做法继续进行下去,就得到小格子越来越多的谢尔宾斯基地毯(如图).若图1中的阴影三角形面积为1,则图5中的所有阴影三角形的面积之和是    

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

观察下列图形的构成规律,依照此规律,第10个图形中共有______个“•”.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是______ .

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

已知四边形ABCD内接于⊙O,∠ADC=90°,∠DCB<90°,对角线AC平分∠DCB ,延长DA,CB相交于点E.
(1)如图1,EB=AD,求证:△ABE是等腰直角三角形;
(2)如图2,连接OE,过点E作直线EF,使得∠OEF=30°,当∠ACE≥30°时,判断直线EF与⊙O的位置关系,并说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

定义:长宽比为:1(n为正基数)的矩形称为株为矩形.下面,我们通过折叠的方式折出一个矩形.如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF
则四边形BCEF为矩形
证明:设正方形ABCD的边长为1,则BD==
由折叠性质可知BG=BC=1,,则四边形BCEF为矩形


阅读以上内容,回答下列问题:
在图中,所有与CH相等的线段是         ,tan的值是        
已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图
求证:四边形BCMN是矩形

将图中的矩形BCMN沿用(2)中的操作3次后,得到一个“矩形”,则n的值是

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图.抛物线y=x2-4x与x轴交于O,A两点,P为抛物线上一点,过点P的直线y="x+" m与对称轴交于点Q.

( 1 )这条抛物线的对称轴是         , 直线PQ与x軸所夹锐角的度数是         ,
(2)若两个三角形面积满足,求m的値:
(3)当点P在x軸下方的抛物线上时.过点C(2,2)的直线AC与直线PQ交于点D,求:
PD+DQ的最大值;②PDDQ的最大值.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,已知抛物线的对称轴为,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.

(1)求抛物线的解析式;
(2)填空:①用含m的式子表示点C,D的坐标:C(            ),D(             );
②当m=      时,△ACD的周长最小;
(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

定义:底与腰的比是的等腰三角形叫做黄金等腰三角形.
如图,已知△ABC中,AB=BC,∠C=36°,BA1平分∠ABC交AC于A1

(1)=AA1•A C;
(2)探究:△ABC是否为黄金等腰三角形?请说明理由;(提示:此处不妨设AC=1)
(3)应用:已知AC=a,作A1B1∥AB交BC于B1,B1A2平分∠A1B1C交AC于A2,作A2B2∥AB交B2,B2A3平分∠A2B2C交AC于A3,作A3B3∥AB交BC于B3,…,依此规律操作下去,用含a,n的代数式表示An﹣1An.(n为大于1的整数,直接回答,不必说明理由)

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在菱形ABCD中,M,N分别是边AB,BC的中点,MP⊥AB交边CD于点P,连接NM,NP.

(1)若∠B=60°,这时点P与点C重合,则∠NMP=        度;
(2)求证:NM=NP;
(3)当△NPC为等腰三角形时,求∠B的度数.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.

(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;
(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;
(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动,M,N分别是AD,CD的中点,连接MN,设点D运动的时间为t.

(1)判断MN与AC的位置关系;
(2)求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;
(3)若△DMN是等腰三角形,求t的值.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,已知点D在双曲线)的图象上,以D为圆心的⊙D与y轴相切于点C(0,4),与x轴交于A,B两点,抛物线经过A,B,C三点,点P是抛物线上的动点,且线段AP与BC所在直线有交点Q.

(1)写出点D的坐标并求出抛物线的解析式;
(2)证明∠ACO=∠OBC;
(3)探究是否存在点P,使点Q为线段AP的四等分点?若存在,求出点P的坐标;若不存在,请说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,菱形ABCD的对角线AC,BD相交于点O,点E,F分别是边AB,AD的中点.

(1)请判断△OEF的形状,并证明你的结论;
(2)若AB=13,AC=10,请求出线段EF的长.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数(张)与售票时间x(小时)的变化趋势如图1,每个无人售票窗口售出的车票数(张)与售票时间x(小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.
(1)求图2中所确定抛物线的解析式;
(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

抛物线,若a,b,c满足b=a+c,则称抛物线为“恒定”抛物线.
(1)求证:“恒定”抛物线必过x轴上的一个定点A;
(2)已知“恒定”抛物线的顶点为P,与x轴另一个交点为B,是否存在以Q为顶点,与x轴另一个交点为C的“恒定”抛物线,使得以PA,CQ为边的四边形是平行四边形?若存在,求出抛物线解析式;若不存在,请说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.
特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).
问题探究:把图1中的△AEF绕着点A顺时针旋转.
(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;
(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)记,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,点A(,1)、B(2,0)、O(0,0),反比例函数y=图象经过点A.

(1)求k的值;
(2)将△AOB绕点O逆时针旋转60°,得到△COD,其中点A与点C对应,试判断点D是否在该反比例函数的图象上?

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

某校在基地参加社会实践话动中,带队老师考问学生:基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长69米的不锈钢栅栏围成,与墙平行的一边留一个宽为3米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:

请根据上面的信息,解决问题:
(1)设AB=x米(x>0),试用含x的代数式表示BC的长;
(2)请你判断谁的说法正确,为什么?

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

(1)如图1是某个多面体的表面展开图.
①请你写出这个多面体的名称,并指出图中哪三个字母表示多面体的同一点;
②如果沿BC、GH将展开图剪成三块,恰好拼成一个矩形,那么△BMC应满足什么条件?(不必说理)
(2)如果将一个三棱柱的表面展开图剪成四块,恰好拼成一个三角形,如图2,那么该三棱柱的侧面积与表面积的比值是多少?为什么?(注:以上剪拼中所有接缝均忽略不计)

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.
(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长;
(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.
①判断OQ与AC的位置关系,并说明理由;
②求线段PQ的长.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,顶点为A(1,﹣1)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).

(1)求抛物线的解析式;
(2)求点O到直线AB的距离;
(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,请你直接写出点M的坐标.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

理数学兴趣小组在探究如何求tan15°的值,经过思考、讨论、交流,得到以下思路:思路一 如图1,在Rt△ABC中,∠C=90°,∠ABC=30°,延长CB至点D,使BD=BA,连接AD.设AC=1,则BD=BA=2,BC=.tanD=tan15°===
思路二 利用科普书上的和(差)角正切公式:tan(α±β)=.假设α=60°,β=45°代入差角正切公式:tan15°=tan(60°﹣45°)===
思路三 在顶角为30°的等腰三角形中,作腰上的高也可以…
思路四  …
请解决下列问题(上述思路仅供参考).
(1)类比:求出tan75°的值;
(2)应用:如图2,某电视塔建在一座小山上,山高BC为30米,在地平面上有一点A,测得A,C两点间距离为60米,从A测得电视塔的视角(∠CAD)为45°,求这座电视塔CD的高度;
(3)拓展:如图3,直线与双曲线交于A,B两点,与y轴交于点C,将直线AB绕点C旋转45°后,是否仍与双曲线相交?若能,求出交点P的坐标;若不能,请说明理由.

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知

如图,抛物线与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.
(1)填空:点C的坐标为(           ),点D的坐标为(           );
(2)设点P的坐标为(a,0),当最大时,求a的值并在图中标出点P的位置;
(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t为何值时S最大,最大值为多少?

来源:2015中考真题分项汇编 第2期 专题12 探索性问题
  • 题型:未知
  • 难度:未知