2016年吉林省中考数学试卷
习近平总书记提出了未来5年"精准扶贫"的战略构想,意味着每年要减贫约11700000人,将数据11700000用科学记数法表示为 ( )
A. |
1.17×106 |
B. |
1.17×107 |
C. |
1.17×108 |
D. |
11.7×106 |
小红要购买珠子串成一条手链,黑色珠子每个 a 元,白色珠子每个 b 元,要串成如图所示的手链,小红购买珠子应该花费 ( )
A. |
(3a+4b) 元 |
B. |
(4a+3b) 元 |
C. |
4(a+b) 元 |
D. |
3(a+b) 元 |
如图,阴影部分是两个半径为1的扇形,若 α=120° , β=60° ,则大扇形与小扇形的面积之差为 ( )
A. |
π3 |
B. |
π6 |
C. |
5π3 |
D. |
5π6 |
某学校要购买电脑,A型电脑每台 5000 元,B型电脑每台 3000 元, 购买 10 台电脑共花费 34000 元 . 设购买A型电脑x台, 购买B型电脑y台, 则根据题意可列方程组为 .
如图,AB//CD,直线EF分别交AB、CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=75°,则∠PNM等于 度.
如图,已知线段AB,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于C、D两点,作直线CD交AB于点E,在直线CD上任取一点F,连接FA,FB.若FA=5,则FB= .
如图,四边形ABCD内接于⊙O,∠DAB=130°,连接OC,点P是半径OC上任意一点,连接DP,BP,则∠BPD可能为 度(写出一个即可).
在三角形纸片ABC中,∠C=90°,∠B=30°,点D(不与B,C重合)是BC上任意一点,将此三角形纸片按下列方式折叠,若EF的长度为a,则ΔDEF的周长为 (用含a的式子表示).
在一个不透明的口袋中装有 1 个红球, 1 个绿球和 1 个白球, 这 3 个球除颜色不同外, 其它都相同, 从口袋中随机摸出 1 个球, 记录其颜色 . 然后放回口袋并摇匀, 再从口袋中随机摸出 1 个球, 记录其颜色, 请利用画树状图或列表的方法, 求两次摸到的球都是红球的概率 .
图1,图2都是8×8的正方形网格,每个小正方形的顶点成为格点,每个小正方形的边长均为1,在每个正方形网格中标注了6个格点,这6个格点简称为标注点
(1)请在图1,图2中,以4个标注点为顶点,各画一个平行四边形(两个平行四边形不全等);
(2)图1中所画的平行四边形的面积为 .
某校学生会为了解环保知识的普及情况,从该校随机抽取部分学生,对他们进行了垃圾分类了解程度的调查,根调查收集的数据绘制了如下的扇形统计图,其中对垃圾分类非常了解的学生有30人
(1)本次抽取的学生有 人;
(2)请补全扇形统计图;
(3)请估计该校1600名学生中对垃圾分类不了解的人数.
如图,某飞机于空中A处探测到目标C,此时飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角α=43°,求飞机A与指挥台B的距离(结果取整数)
(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)
如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象上有一点A(m,4),过点A作AB⊥x轴于点B,将点B向右平移2个单位长度得到点C,过点C作y轴的平行线交反比例函数的图象于点D,CD=43
(1)点D的横坐标为 (用含m的式子表示);
(2)求反比例函数的解析式.
甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,乙出发,设甲与A地相距y甲(km),乙与A地相距y乙(km),甲离开A地的时间为x(h),y甲、y乙与x之间的函数图象如图所示.
(1)甲的速度是 km/h;
(2)当1⩽时,求关于的函数解析式;
(3)当乙与地相距时,甲与地相距 .
(1)如图1,在中,,以点为中心,把逆时针旋转,得到△;再以点为中心,把顺时针旋转,得到△,连接,则与的位置关系为 ;
(2)如图2,当是锐角三角形,时,将按照(1)中的方式旋转,连接,探究与的位置关系,写出你的探究结论,并加以证明;
(3)如图3,在图2的基础上,连接,若,△的面积为4,则△的面积为 .
如图,在等腰直角三角形中,,,于点,点从点出发,沿方向以的速度运动到点停止,在运动过程中,过点作交于点,以线段为边作等腰直角三角形,且(点,位于异侧).设点的运动时间为,与重叠部分的面积为
(1)当点落在上时, ;
(2)当点落在上时, ;
(3)求关于的函数解析式,并写出自变量的取值范围.