优题课 - 聚名师,上好课(www.youtike.com)
  首页 / 试题库 / 初中数学 / 试卷选题

2020年湖南省长沙市中考数学试卷

( - 2 ) 3 的值等于 (    )

A.

- 6

B.

6

C.

8

D.

- 8

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

下列图形中,是轴对称图形但不是中心对称图形的是 (    )

A.

B.

C.

D.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

为了将"新冠"疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为 (    )

A.

6 . 324 × 10 11

B.

6 . 324 × 10 10

C.

632 . 4 × 10 9

D.

0 . 6324 × 10 12

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

下列运算正确的是 (    )

A.

3 + 2 = 5

B.

x 8 ÷ x 2 = x 6

C.

3 × 2 = 5

D.

( a 5 ) 2 = a 7

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以"三湘四水,杜鹃花开"为设计理念,塑造出"杜鹃花开"的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为 10 6 m 3 土石方的任务,该运输公司平均运送土石方的速度 v (单位: m 3 / 天)与完成运送任务所需时间 t (单位:天)之间的函数关系式是 (    )

A.

v = 10 6 t

B.

v = 10 6 t

C.

v = 1 10 6 t 2

D.

v = 10 6 t 2

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

从一艘船上测得海岸上高为42米的灯塔顶部的仰角为 30 ° 时,船离灯塔的水平距离是 (    )

A.

42 3

B.

14 3

C.

21米

D.

42米

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

不等式组 x + 1 - 1 x 2 < 1 的解集在数轴上表示正确的是 (    )

A.

B.

C.

D.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是 (    )

A.

第一次摸出的球是红球,第二次摸出的球一定是绿球

B.

第一次摸出的球是红球,第二次摸出的不一定是红球

C.

第一次摸出的球是红球的概率是 1 3

D.

两次摸出的球都是红球的概率是 1 9

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

2020年3月14日,是人类第一个"国际数学日".这个节日的昵称是" π ( Day ) ".国际数学日之所以定在3月14日,是因为"3.14"是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:

①圆周率是一个有理数;

②圆周率是一个无理数;

③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;

④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.

其中表述正确的序号是 (    )

A.

②③

B.

①③

C.

①④

D.

②④

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图:一块直角三角板的 60 ° 角的顶点 A 与直角顶点 C 分别在两平行线 FD GH 上,斜边 AB 平分 CAD ,交直线 GH 于点 E ,则 ECB 的大小为 (    )

A.

60 °

B.

45 °

C.

30 °

D.

25 °

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

随着 5 G 网络技术的发展,市场对 5 G 产品的需求越来越大,为满足市场需求,某大型 5 G 产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产 x 万件产品,依题意得 (    )

A.

400 x - 30 = 500 x

B.

400 x = 500 x + 30

C.

400 x = 500 x - 30

D.

400 x + 30 = 500 x

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

"闻起来臭,吃起来香"的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把"焦脆而不糊"的豆腐块数的百分比称为"可食用率".在特定条件下,"可食用率" P 与加工煎炸时间 t (单位:分钟)近似满足的函数关系为: P = a t 2 + bt + c ( a 0 a b c 是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为 (    )

A.

3.50分钟

B.

4.05分钟

C.

3.75分钟

D.

4.25分钟

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:

次数

7次及以上

6

5

4

3

2

1次及以下

人数

8

12

31

24

15

6

4

这次调查中的众数和中位数分别是    

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

某数学老师在课外活动中做了一个有趣的游戏:首先发给ABC三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:

第一步,A同学拿出二张扑克牌给B同学;

第二步,C同学拿出三张扑克牌给B同学;

第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.

请你确定,最终B同学手中剩余的扑克牌的张数为  

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为  

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,点P在以MN为直径的半圆上运动(点P不与MN重合),PQMNNE平分MNP,交PM于点E,交PQ于点F

(1)PFPQ+PEPM=  

(2)若PN2=PM·MN,则MQNQ=  

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

计算:|-3|-(10-1)0+2cos45°+(14)-1

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

先化简再求值:x+2x2-6x+9·x2-9x+2-xx-3,其中x=4

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:

已知:AOB

求作:AOB的平分线.

作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N

(2)分别以点MN为圆心,大于12MN的长为半径画弧,两弧在AOB的内部相交于点C

(3)画射线OC,射线OC即为所求(如图).

请你根据提供的材料完成下面问题.

(1)这种作已知角的平分线的方法的依据是  .(填序号)

SSSSASAASASA

(2)请你证明OCAOB的平分线.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:

(1)这次调查活动共抽取     人;

(2)m=  n=  

(3)请将条形统计图补充完整;

(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,ABO的直径,CO上一点,AD与过C点的直线互相垂直,垂足为DAC平分DAB

(1)求证:DCO的切线.

(2)若AD=3DC=3,求O的半径.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

在矩形ABCD中,EDC边上一点,把ΔADE沿AE翻折,使点D恰好落在BC边上的点F

(1)求证:ΔABFΔFCE

(2)若AB=23AD=4,求EC的长;

(3)若AE-DE=2EC,记BAF=αFAE=β,求tanα+tanβ的值.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.

(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“”,不是“H函数”的打“×”.

y=2x(  )

y=mx(m0)(  )

y=3x-1(  )

(2)若点A(1,m)与点B(n,-4)是关于x的“H函数” y=ax2+bx+c(a0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求abc的值或取值范围.

(3)若关于x的“H函数” y=ax2+2bx+3c(abc是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b-a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知

如图,半径为4的O中,弦AB的长度为43,点C是劣弧AB̂上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DEODOE

(1)求AOB的度数;

(2)当点C沿着劣弧AB̂从点A开始,逆时针运动到点B时,求ΔODE的外心P所经过的路径的长度;

(3)分别记ΔODEΔCDE的面积为S1S2,当S12-S22=21时,求弦AC的长度.

来源:2020年湖南省长沙市中考数学试卷
  • 题型:未知
  • 难度:未知